論文の概要: Predicting Stable Configurations for Semantic Placement of Novel Objects
- arxiv url: http://arxiv.org/abs/2108.12062v1
- Date: Thu, 26 Aug 2021 23:05:05 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-30 14:07:07.270253
- Title: Predicting Stable Configurations for Semantic Placement of Novel Objects
- Title(参考訳): 新しい物体のセマンティック配置のための安定な構成予測
- Authors: Chris Paxton, Chris Xie, Tucker Hermans, and Dieter Fox
- Abstract要約: 我々のゴールは、新しい環境における学習された意味的関係に従って、ロボットが未確認の物体を配置できるようにすることである。
我々は、未知のオブジェクトのセマンティック配置のための計画アルゴリズムと密に統合するために、モデルとトレーニングをゼロから構築する。
提案手法は,RGB-Dセンシングのみによる形状の異なるシーンにおける未知物体のセマンティック・アレンジメントのための動作計画を可能にする。
- 参考スコア(独自算出の注目度): 37.18437299513799
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human environments contain numerous objects configured in a variety of
arrangements. Our goal is to enable robots to repose previously unseen objects
according to learned semantic relationships in novel environments. We break
this problem down into two parts: (1) finding physically valid locations for
the objects and (2) determining if those poses satisfy learned, high-level
semantic relationships. We build our models and training from the ground up to
be tightly integrated with our proposed planning algorithm for semantic
placement of unknown objects. We train our models purely in simulation, with no
fine-tuning needed for use in the real world. Our approach enables motion
planning for semantic rearrangement of unknown objects in scenes with varying
geometry from only RGB-D sensing. Our experiments through a set of simulated
ablations demonstrate that using a relational classifier alone is not
sufficient for reliable planning. We further demonstrate the ability of our
planner to generate and execute diverse manipulation plans through a set of
real-world experiments with a variety of objects.
- Abstract(参考訳): 人間環境は様々な配置で構成された多数のオブジェクトを含む。
我々のゴールは、新しい環境における学習された意味的関係に従って、ロボットが未確認の物体を配置できるようにすることである。
1)物体の物理的に有効な位置を見つけること,(2)これらのポーズが学習された高レベルの意味的関係を満たすかどうかを決定すること,である。
我々は、未知のオブジェクトのセマンティック配置のための計画アルゴリズムと密に統合するために、モデルとトレーニングをゼロから構築する。
私たちはモデルを純粋にシミュレーションでトレーニングし、現実世界で使用するための微調整は不要です。
提案手法は,RGB-Dセンシングのみによる形状の異なるシーンにおける未知物体のセマンティック・アレンジメントのための動作計画を可能にする。
シミュレーションアブレーションによる実験により, 信頼度の高い計画にリレーショナル分類器だけでは不十分であることが判明した。
我々はさらに,様々なオブジェクトを用いた実世界の実験を通して,多様な操作計画を作成し実行するためのプランナーの能力を示す。
関連論文リスト
- ShapeGrasp: Zero-Shot Task-Oriented Grasping with Large Language Models through Geometric Decomposition [8.654140442734354]
不慣れな物体のタスク指向の把握は、動的家庭環境におけるロボットにとって必要なスキルである。
本稿では,対象物体の幾何学的分解を簡単な凸形状に生かしたゼロショットタスク指向の把握手法を提案する。
このアプローチでは、ゼロショットタスク指向の把握を容易にするために、最小限の必須情報(オブジェクト名と意図したタスク)を使用します。
論文 参考訳(メタデータ) (2024-03-26T19:26:53Z) - Multi-Model 3D Registration: Finding Multiple Moving Objects in
Cluttered Point Clouds [23.923838486208524]
マルチモデル3D登録問題(Multi-model 3D registration)のバリエーションについて検討する。
マルチモデル登録問題では、異なるポーズでオブジェクトの集合を撮影する2点の雲が与えられる。
私たちは、すべてのオブジェクトが2点の雲の間を移動する様子を同時に再構築したいと考えています。
論文 参考訳(メタデータ) (2024-02-16T18:01:43Z) - ICGNet: A Unified Approach for Instance-Centric Grasping [42.92991092305974]
オブジェクト中心の把握のためのエンドツーエンドアーキテクチャを導入する。
提案手法の有効性を,合成データセット上での最先端手法に対して広範囲に評価することにより示す。
論文 参考訳(メタデータ) (2024-01-18T12:41:41Z) - Learning Extrinsic Dexterity with Parameterized Manipulation Primitives [8.7221770019454]
我々は、オブジェクトのポーズを変えるために環境を利用する一連のアクションを学習する。
我々のアプローチは、オブジェクトとグリップと環境の間の相互作用を利用してオブジェクトの状態を制御することができる。
拘束されたテーブルトップワークスペースから様々な重量,形状,摩擦特性の箱状物体を選別する手法の評価を行った。
論文 参考訳(メタデータ) (2023-10-26T21:28:23Z) - Transferring Foundation Models for Generalizable Robotic Manipulation [82.12754319808197]
インターネット規模の基盤モデルによって生成された言語推論セグメンテーションマスクを効果的に活用する新しいパラダイムを提案する。
提案手法は,オブジェクトのポーズを効果的かつ堅牢に知覚し,サンプル効率のよい一般化学習を可能にする。
デモは提出されたビデオで見ることができ、より包括的なデモはlink1またはlink2で見ることができます。
論文 参考訳(メタデータ) (2023-06-09T07:22:12Z) - Planning for Complex Non-prehensile Manipulation Among Movable Objects
by Interleaving Multi-Agent Pathfinding and Physics-Based Simulation [23.62057790524675]
重いクラッタにおける現実世界の操作問題は、ロボットが環境内の物体との潜在的な接触を推論する必要がある。
そこで我々は,対象物を棚から取り出すためのピック・アンド・プレイス・スタイルのタスクに焦点を合わせ,そのタスクを解決するために移動可能なオブジェクトを並べ替える必要がある。
特に、我々のモチベーションは、ロボットが複雑なロボットオブジェクトとオブジェクトオブジェクトの相互作用を引き起こす非包括的再配置動作を推論し、検討できるようにすることである。
論文 参考訳(メタデータ) (2023-03-23T15:29:27Z) - Discovering Objects that Can Move [55.743225595012966]
手動ラベルなしでオブジェクトを背景から分離する、オブジェクト発見の問題について検討する。
既存のアプローチでは、色、テクスチャ、位置などの外観の手がかりを使用して、ピクセルをオブジェクトのような領域に分類する。
私たちは、動的オブジェクト -- 世界で独立して動くエンティティ -- にフォーカスすることを選びます。
論文 参考訳(メタデータ) (2022-03-18T21:13:56Z) - Suspected Object Matters: Rethinking Model's Prediction for One-stage
Visual Grounding [93.82542533426766]
疑似オブジェクト間の対象オブジェクト選択を促進するため,疑似オブジェクト変換機構(SOT)を提案する。
SOTは既存のCNNとTransformerベースのワンステージ視覚グラウンドにシームレスに統合できる。
実験の結果,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2022-03-10T06:41:07Z) - TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and
Reconstruction [57.1209039399599]
我々は,シーン全体とその中のすべてのオブジェクトに対して,単一のボリュームを維持できるマップ表現を提案する。
複数の動的オブジェクト追跡および再構成シナリオにおいて,本表現は,近接して移動する他のオブジェクトによって一時的にオクルードされても,表面の正確な再構成を維持できる。
提案したTSDF++の定式化を公開合成データセット上で評価し,標準のTSDFマップ表現と比較した場合の閉塞面の復元性を示す。
論文 参考訳(メタデータ) (2021-05-16T16:15:05Z) - PackIt: A Virtual Environment for Geometric Planning [68.79816936618454]
PackItは、幾何学的計画を行う能力を評価し、潜在的に学習する仮想環境である。
進化的アルゴリズムを用いて,一組の難解なパッケージングタスクを構築した。
論文 参考訳(メタデータ) (2020-07-21T22:51:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。