Attention based Multiple Instance Learning for Classification of Blood
Cell Disorders
- URL: http://arxiv.org/abs/2007.11641v1
- Date: Wed, 22 Jul 2020 19:29:40 GMT
- Title: Attention based Multiple Instance Learning for Classification of Blood
Cell Disorders
- Authors: Ario Sadafi, Asya Makhro, Anna Bogdanova, Nassir Navab, Tingying Peng,
Shadi Albarqouni, Carsten Marr
- Abstract summary: We propose an attention based multiple instance learning method to classify blood samples of patients suffering from blood cell disorders.
With the features extracted for each cell, a multiple instance learning method classifies patient samples into one out of four blood cell disorders.
The attention mechanism provides a measure of the contribution of each cell to the overall classification and significantly improves the network's classification accuracy as well as its interpretability for the medical expert.
- Score: 38.086308180994976
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Red blood cells are highly deformable and present in various shapes. In blood
cell disorders, only a subset of all cells is morphologically altered and
relevant for the diagnosis. However, manually labeling of all cells is
laborious, complicated and introduces inter-expert variability. We propose an
attention based multiple instance learning method to classify blood samples of
patients suffering from blood cell disorders. Cells are detected using an R-CNN
architecture. With the features extracted for each cell, a multiple instance
learning method classifies patient samples into one out of four blood cell
disorders. The attention mechanism provides a measure of the contribution of
each cell to the overall classification and significantly improves the
network's classification accuracy as well as its interpretability for the
medical expert.
Related papers
- Multimodal Analysis of White Blood Cell Differentiation in Acute Myeloid Leukemia Patients using a β-Variational Autoencoder [38.13262557169157]
We introduce an unsupervised method that explores and reconstructs morphological and transcriptomic data.
Our method is based on a beta-variational autoencoder (ss-VAE) with a customized loss function.
It provides a unique tool to improve the understanding of white blood cell maturation for biomedicine and diagnostics.
arXiv Detail & Related papers (2024-08-13T08:24:52Z) - MMIL: A novel algorithm for disease associated cell type discovery [58.044870442206914]
Single-cell datasets often lack individual cell labels, making it challenging to identify cells associated with disease.
We introduce Mixture Modeling for Multiple Learning Instance (MMIL), an expectation method that enables the training and calibration of cell-level classifiers.
arXiv Detail & Related papers (2024-06-12T15:22:56Z) - Neural Cellular Automata for Lightweight, Robust and Explainable Classification of White Blood Cell Images [40.347953893940044]
We introduce a novel approach for white blood cell classification based on neural cellular automata (NCA)
Our NCA-based method is significantly smaller in terms of parameters and exhibits robustness to domain shifts.
Our results demonstrate that NCA can be used for image classification, and they address key challenges of conventional methods.
arXiv Detail & Related papers (2024-04-08T14:59:53Z) - UniCell: Universal Cell Nucleus Classification via Prompt Learning [76.11864242047074]
We propose a universal cell nucleus classification framework (UniCell)
It employs a novel prompt learning mechanism to uniformly predict the corresponding categories of pathological images from different dataset domains.
In particular, our framework adopts an end-to-end architecture for nuclei detection and classification, and utilizes flexible prediction heads for adapting various datasets.
arXiv Detail & Related papers (2024-02-20T11:50:27Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - Pixel-Level Explanation of Multiple Instance Learning Models in
Biomedical Single Cell Images [52.527733226555206]
We investigate the use of four attribution methods to explain a multiple instance learning models.
We study two datasets of acute myeloid leukemia with over 100 000 single cell images.
We compare attribution maps with the annotations of a medical expert to see how the model's decision-making differs from the human standard.
arXiv Detail & Related papers (2023-03-15T14:00:11Z) - Imbalanced Domain Generalization for Robust Single Cell Classification
in Hematological Cytomorphology [3.7007225479462402]
We train a robust CNN for WBC classification by addressing cross-domain data imbalance and domain shifts.
Our approach achieves the best F1 macro score compared to other existing methods.
arXiv Detail & Related papers (2023-03-14T10:20:31Z) - Classification of White Blood Cell Leukemia with Low Number of
Interpretable and Explainable Features [0.0]
White Blood Cell (WBC) Leukaemia is detected through image-based classification.
Convolutional Neural Networks are used to learn the features needed to classify images of cells a malignant or healthy.
This type of model requires learning a large number of parameters and is difficult to interpret and explain.
We present an XAI model which uses only 24 explainable and interpretable features and is highly competitive to other approaches by outperforming them by about 4.38%.
arXiv Detail & Related papers (2022-01-28T00:08:56Z) - White blood cell subtype detection and classification [0.9176056742068814]
The classification of the white blood cells plays an important part in the medical diagnosis.
The current procedures to identify the white blood cell subtype is more time taking and error-prone.
The proposed work is found to detect the white blood cell with 99.2% accuracy and classify with 90% accuracy.
arXiv Detail & Related papers (2021-08-10T11:55:52Z) - Relational Subsets Knowledge Distillation for Long-tailed Retinal
Diseases Recognition [65.77962788209103]
We propose class subset learning by dividing the long-tailed data into multiple class subsets according to prior knowledge.
It enforces the model to focus on learning the subset-specific knowledge.
The proposed framework proved to be effective for the long-tailed retinal diseases recognition task.
arXiv Detail & Related papers (2021-04-22T13:39:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.