論文の概要: Deep Learning Based Segmentation of Various Brain Lesions for
Radiosurgery
- arxiv url: http://arxiv.org/abs/2007.11784v1
- Date: Wed, 22 Jul 2020 09:35:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-07 22:28:15.674220
- Title: Deep Learning Based Segmentation of Various Brain Lesions for
Radiosurgery
- Title(参考訳): 放射線治療のための深層学習による脳病変の分離
- Authors: Siang-Ruei Wu, Hao-Yun Chang, Florence T Su, Heng-Chun Liao, Wanju
Tseng, Chun-Chih Liao, Feipei Lai, Feng-Ming Hsu, Furen Xiao
- Abstract要約: 臨床定位放射線治療データセットに最先端のディープラーニングセグメンテーションアルゴリズムをベンチマークした。
特に, サンプリング手法, モデルアーキテクチャ, 損失関数の選択について, モデル性能を比較した。
- 参考スコア(独自算出の注目度): 0.8431877864777444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic segmentation of medical images with deep learning models is rapidly
developed. In this study, we benchmarked state-of-the-art deep learning
segmentation algorithms on our clinical stereotactic radiosurgery dataset,
demonstrating the strengths and weaknesses of these algorithms in a fairly
practical scenario. In particular, we compared the model performances with
respect to their sampling method, model architecture, and the choice of loss
functions, identifying the suitable settings for their applications and
shedding light on the possible improvements.
- Abstract(参考訳): 深層学習モデルを用いた医用画像のセマンティックセグメンテーションが急速に進んでいる。
本研究では,我々の臨床立体的ラジオサージリーデータセットに最先端のディープラーニングセグメンテーションアルゴリズムをベンチマークし,このアルゴリズムの長所と短所をかなり実用的なシナリオで実証した。
特に,サンプル手法,モデルアーキテクチャ,損失関数の選択に関するモデル性能を比較し,アプリケーションに適した設定を特定し,改善の可能性に光を当てた。
関連論文リスト
- Semantic Segmentation Refiner for Ultrasound Applications with Zero-Shot Foundation Models [1.8142288667655782]
本稿では,抽象的な形状を分割するセグメンテーション基礎モデルの能力を利用した,プロンプトレスセグメンテーション手法を提案する。
本手法の利点は,小型筋骨格超音波画像データセットを用いた実験で明らかにされた。
論文 参考訳(メタデータ) (2024-04-25T04:21:57Z) - Data Augmentation-Based Unsupervised Domain Adaptation In Medical
Imaging [0.709016563801433]
脳MRI領域分割における堅牢な領域適応のための教師なし手法を提案する。
その結果,提案手法は高い精度を実現し,幅広い適用性を示し,各種タスクにおけるドメインシフトに対する顕著な堅牢性を示した。
論文 参考訳(メタデータ) (2023-08-08T17:00:11Z) - FAST-AID Brain: Fast and Accurate Segmentation Tool using Artificial
Intelligence Developed for Brain [0.8376091455761259]
ヒト脳の132領域への高速かつ正確なセグメンテーションのための新しい深層学習法を提案する。
提案モデルは、効率的なU-Netライクなネットワークと、異なるビューと階層関係の交差点の利点を利用する。
提案手法は,画像の事前処理や性能低下を伴わずに頭蓋骨や他の人工物を含む脳MRIデータに適用することができる。
論文 参考訳(メタデータ) (2022-08-30T16:06:07Z) - Model-Based Deep Learning: On the Intersection of Deep Learning and
Optimization [101.32332941117271]
決定アルゴリズムは様々なアプリケーションで使われている。
数理モデルに頼らずにデータから調整された高度パラメトリックアーキテクチャを使用するディープラーニングアプローチが、ますます人気が高まっている。
モデルに基づく最適化とデータ中心のディープラーニングは、しばしば異なる規律とみなされる。
論文 参考訳(メタデータ) (2022-05-05T13:40:08Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
医用超音波画像は、信頼性と解釈可能な画像再構成を提供するために、高品質な信号処理に大きく依存している。
データ駆動方式で最適化されたディープラーニングベースの手法が人気を集めている。
比較的新しいパラダイムは、データ駆動型ディープラーニングの活用とドメイン知識の活用という2つのパワーを組み合わせたものだ。
論文 参考訳(メタデータ) (2022-04-09T13:04:36Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - Deep Unrolled Recovery in Sparse Biological Imaging [62.997667081978825]
ディープ・アルゴリズム・アンローリング(Deep Algorithm Unrolling)は、反復的アルゴリズムの解釈可能性と教師付きディープラーニングの性能向上を組み合わせたディープ・アーキテクチャを開発するためのモデルベースのアプローチである。
この枠組みは生体イメージングの応用に適しており、測定プロセスを記述する物理モデルが存在し、回復すべき情報がしばしば高度に構造化されている。
論文 参考訳(メタデータ) (2021-09-28T20:22:44Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
国際疾病分類 (icd) は、世界中で臨床コーディングに使われているデファクトコードである。
これらのコードにより、医療提供者は償還を請求し、診断情報の効率的な保管と検索を容易にします。
提案手法は,日常的な医学データと科学論文の外部知識を用いて,効果的に単語ベクトルを訓練することにより,神経モデルの性能を高める。
論文 参考訳(メタデータ) (2021-02-26T17:49:58Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。