論文の概要: Semantic Segmentation Refiner for Ultrasound Applications with Zero-Shot Foundation Models
- arxiv url: http://arxiv.org/abs/2404.16325v1
- Date: Thu, 25 Apr 2024 04:21:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 14:48:28.161832
- Title: Semantic Segmentation Refiner for Ultrasound Applications with Zero-Shot Foundation Models
- Title(参考訳): ゼロショット基礎モデルを用いた超音波用セマンティックセグメンテーション精錬器
- Authors: Hedda Cohen Indelman, Elay Dahan, Angeles M. Perez-Agosto, Carmit Shiran, Doron Shaked, Nati Daniel,
- Abstract要約: 本稿では,抽象的な形状を分割するセグメンテーション基礎モデルの能力を利用した,プロンプトレスセグメンテーション手法を提案する。
本手法の利点は,小型筋骨格超音波画像データセットを用いた実験で明らかにされた。
- 参考スコア(独自算出の注目度): 1.8142288667655782
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the remarkable success of deep learning in medical imaging analysis, medical image segmentation remains challenging due to the scarcity of high-quality labeled images for supervision. Further, the significant domain gap between natural and medical images in general and ultrasound images in particular hinders fine-tuning models trained on natural images to the task at hand. In this work, we address the performance degradation of segmentation models in low-data regimes and propose a prompt-less segmentation method harnessing the ability of segmentation foundation models to segment abstract shapes. We do that via our novel prompt point generation algorithm which uses coarse semantic segmentation masks as input and a zero-shot prompt-able foundation model as an optimization target. We demonstrate our method on a segmentation findings task (pathologic anomalies) in ultrasound images. Our method's advantages are brought to light in varying degrees of low-data regime experiments on a small-scale musculoskeletal ultrasound images dataset, yielding a larger performance gain as the training set size decreases.
- Abstract(参考訳): 医用画像解析における深層学習の顕著な成功にもかかわらず、高品質なラベル付き画像が監督のために不足しているため、医用画像のセグメンテーションは依然として困難である。
さらに,自然画像と医用画像,特に超音波画像の間に有意な領域ギャップがあり,自然画像に基づいて訓練された微調整モデルを手作業に妨げている。
本研究では,低データ状態におけるセグメンテーションモデルの性能劣化に対処し,セグメンテーション基礎モデルを用いて抽象的な形状をセグメンテーションする方法を提案する。
入力として粗いセマンティックセグメンテーションマスクを用いた新しいプロンプトポイント生成アルゴリズムと、最適化対象としてゼロショットプロンプト可能な基礎モデルにより実現した。
超音波画像におけるセグメンテーション発見タスク(病理異常)について検討した。
本手法の利点は, 小型筋骨格超音波画像データセットを用いて, 各種低データレギュレーション実験を行い, トレーニングセットのサイズが小さくなるにつれて, より大きな性能向上をもたらす。
関連論文リスト
- CP-UNet: Contour-based Probabilistic Model for Medical Ultrasound Images Segmentation [15.56723271531489]
本稿では,輪郭型確率分割モデルCP-UNetを提案する。
セグメンテーションネットワークをガイドし、デコード中の輪郭に焦点を当てる。
本手法は乳腺病変と甲状腺病変のセグメンテーションに有効である。
論文 参考訳(メタデータ) (2024-11-21T15:56:30Z) - ShapeMamba-EM: Fine-Tuning Foundation Model with Local Shape Descriptors and Mamba Blocks for 3D EM Image Segmentation [49.42525661521625]
本稿では3次元EMセグメンテーションのための特殊微調整法であるShapeMamba-EMを提案する。
5つのセグメンテーションタスクと10のデータセットをカバーする、幅広いEMイメージでテストされている。
論文 参考訳(メタデータ) (2024-08-26T08:59:22Z) - Discriminative Hamiltonian Variational Autoencoder for Accurate Tumor Segmentation in Data-Scarce Regimes [2.8498944632323755]
医用画像分割のためのエンドツーエンドハイブリッドアーキテクチャを提案する。
ハミルトン変分オートエンコーダ(HVAE)と識別正則化を用いて生成画像の品質を向上する。
我々のアーキテクチャはスライス・バイ・スライス・ベースで3Dボリュームを分割し、リッチな拡張データセットをカプセル化する。
論文 参考訳(メタデータ) (2024-06-17T15:42:08Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
本研究は、3Dラジオグラフィ画像のための効果的な事前学習フレームワークの設計に焦点をあてる。
ローカルマスキングと低レベルの摂動の組み合わせによって生成された破壊から、オリジナルのイメージを再構築しようとする事前トレーニングフレームワークであるDisruptive Autoencodersを紹介する。
提案する事前トレーニングフレームワークは、複数のダウンストリームタスクでテストされ、最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-07-31T17:59:42Z) - Anomaly Detection-Inspired Few-Shot Medical Image Segmentation Through
Self-Supervision With Supervoxels [23.021720656733088]
そこで本研究では, 異常検出に着想を得た新規な医用画像分割手法を提案する。
我々は1つの前景のプロトタイプを使用して、全てのクエリピクセルの異常スコアを計算する。
セグメンテーションは、学習しきい値を用いてこれらの異常スコアをしきい値にすることで実行される。
論文 参考訳(メタデータ) (2022-03-03T22:36:39Z) - Unsupervised Anomaly Segmentation using Image-Semantic Cycle Translation [31.396372591714695]
unsupervised anomaly segmentation (UAS) は医療画像コミュニティにおいて有望な分野である。
本稿では,健康データ分布のモデル化過程における健康な解剖学の意味空間について紹介する。
BraTSとISLESデータベースの実験結果は、提案されたアプローチが大幅に優れたパフォーマンスを達成することを示しています。
論文 参考訳(メタデータ) (2021-03-16T14:15:30Z) - Uncertainty guided semi-supervised segmentation of retinal layers in OCT
images [4.046207281399144]
セグメンテーションネットワークを訓練する学生・教師のアプローチに基づく,新しい不確実性誘導半教師学習を提案する。
提案するフレームワークは,様々な画像モダリティにまたがるバイオメディカルイメージセグメンテーションに有効である。
論文 参考訳(メタデータ) (2021-03-02T23:14:25Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
データ不足下における部分教師付き学習(PSL)における方法論的ギャップを埋めるために,不確実性下でのビシナルラベル(VLUU)を提案する。
マルチタスク学習とヴィジナルリスク最小化によって動機づけられたVLUUは、ビジナルラベルを生成することによって、部分的に教師付き問題を完全な教師付き問題に変換する。
本研究は,ラベル効率の高い深層学習における新たな研究の方向性を示唆するものである。
論文 参考訳(メタデータ) (2020-11-28T16:31:00Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。