論文の概要: Leveraging Bottom-Up and Top-Down Attention for Few-Shot Object
Detection
- arxiv url: http://arxiv.org/abs/2007.12104v1
- Date: Thu, 23 Jul 2020 16:12:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-07 12:49:06.487933
- Title: Leveraging Bottom-Up and Top-Down Attention for Few-Shot Object
Detection
- Title(参考訳): Few-Shotオブジェクト検出のためのボトムアップとトップダウン注意の活用
- Authors: Xianyu Chen, Ming Jiang, Qi Zhao
- Abstract要約: オブジェクト検出は、アノテーションの少ない例でオブジェクトを検出することを目的としていない。
本稿では、トップダウンとボトムアップの両方の利点を生かした、注意深い複数ショットオブジェクト検出ネットワーク(AttFDNet)を提案する。
- 参考スコア(独自算出の注目度): 31.1548809359908
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot object detection aims at detecting objects with few annotated
examples, which remains a challenging research problem yet to be explored.
Recent studies have shown the effectiveness of self-learned top-down attention
mechanisms in object detection and other vision tasks. The top-down attention,
however, is less effective at improving the performance of few-shot detectors.
Due to the insufficient training data, object detectors cannot effectively
generate attention maps for few-shot examples. To improve the performance and
interpretability of few-shot object detectors, we propose an attentive few-shot
object detection network (AttFDNet) that takes the advantages of both top-down
and bottom-up attention. Being task-agnostic, the bottom-up attention serves as
a prior that helps detect and localize naturally salient objects. We further
address specific challenges in few-shot object detection by introducing two
novel loss terms and a hybrid few-shot learning strategy. Experimental results
and visualization demonstrate the complementary nature of the two types of
attention and their roles in few-shot object detection. Codes are available at
https://github.com/chenxy99/AttFDNet.
- Abstract(参考訳): ほとんど撮影されていないオブジェクト検出は、注釈付きの例がほとんどないオブジェクトの検出を目的としている。
近年,物体検出やその他の視覚タスクにおける自己学習型トップダウン注意機構の有効性が示されている。
しかし、トップダウンの注意は、少数ショット検出器の性能向上にはあまり効果がない。
訓練データ不足のため、オブジェクト検出器は、数発の例で注意マップを効果的に生成できない。
被写体検出装置の性能と解釈性を向上させるため,トップダウンとボトムアップの両方の利点を生かした注意型被写体検出ネットワーク(attfdnet)を提案する。
タスクに依存しないので、ボトムアップの注意は、自然に有能なオブジェクトを検出し、ローカライズするのに役立つ。
さらに、2つの新しい損失項とハイブリッドな複数ショット学習戦略を導入することで、複数ショットオブジェクト検出における特定の課題に対処する。
実験結果と可視化は,2種類の注意の相補的な性質と,その役割を示すものである。
コードはhttps://github.com/chenxy99/AttFDNetで入手できる。
関連論文リスト
- Visible and Clear: Finding Tiny Objects in Difference Map [50.54061010335082]
本稿では,検出モデルに自己再構成機構を導入し,それと微小物体との強い相関関係を明らかにする。
具体的には、再構成画像と入力の差分マップを構築して、検出器の首の内側に再構成ヘッドを配置し、小さな物体に対して高い感度を示す。
さらに、小さな特徴表現をより明確にするために、差分マップガイド機能拡張(DGFE)モジュールを開発する。
論文 参考訳(メタデータ) (2024-05-18T12:22:26Z) - Few-shot Oriented Object Detection with Memorable Contrastive Learning in Remote Sensing Images [11.217630579076237]
リモートセンシングの分野では、FSOD(Few-shot Object Detection)が注目されている。
本稿では,Few-shot Oriented Object Detection with Memorable Contrastive Learning (FOMC) という,リモートセンシングのための新しいFSOD法を提案する。
具体的には、従来の水平有界ボックスの代わりに指向的有界ボックスを用いて、任意指向の空中オブジェクトのより優れた特徴表現を学習する。
論文 参考訳(メタデータ) (2024-03-20T08:15:18Z) - Incremental-DETR: Incremental Few-Shot Object Detection via
Self-Supervised Learning [60.64535309016623]
本稿では,DeTRオブジェクト検出器上での微調整および自己教師型学習によるインクリメンタル・デクリメンタル・デクリメンタル・デクリメンタル・オブジェクト検出を提案する。
まず,DeTRのクラス固有のコンポーネントを自己監督で微調整する。
さらに,DeTRのクラス固有のコンポーネントに知識蒸留を施した数発の微調整戦略を導入し,破滅的な忘れを伴わずに新しいクラスを検出するネットワークを奨励する。
論文 参考訳(メタデータ) (2022-05-09T05:08:08Z) - Task-Focused Few-Shot Object Detection for Robot Manipulation [1.8275108630751844]
本研究では,検出のみに基づく操作手法を開発し,タスク中心の少数ショット検出を導入し,新しいオブジェクトや設定を学習する。
数ショット学習へのインタラクティブなアプローチの実験では、ロボットに検出からオブジェクトを直接操作するように訓練する(ClickBot)。
論文 参考訳(メタデータ) (2022-01-28T21:52:05Z) - A Survey of Self-Supervised and Few-Shot Object Detection [19.647681501581225]
自己教師付き手法は、オブジェクト検出などの下流タスクにうまく転送されるラベルのないデータから表現を学習することを目的としている。
ほとんどショットされていないオブジェクト検出は、ほとんどデータを持たない新しい(見えない)オブジェクトクラスのモデルをトレーニングすることです。
本調査では, 少数ショット・自己監督型物体検出における最新のアプローチを概観し, 特徴付けする。
論文 参考訳(メタデータ) (2021-10-27T18:55:47Z) - One-Shot Object Affordance Detection in the Wild [76.46484684007706]
Affordance Detectionは、画像内のオブジェクトの潜在的なアクション可能性を特定することを指す。
我々は、人間の行動目的を推定し、それを転送して、すべての候補画像から共通価格を検出するワンショットアフォーダンス検出ネットワーク(OSAD-Net)を考案する。
複雑なシーンと豊富なアノテーションによって、当社のPADv2データセットは、アベイランス検出メソッドをベンチマークするためのテストベッドとして使用することができます。
論文 参考訳(メタデータ) (2021-08-08T14:53:10Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
本稿では,超高アスペクト比,すなわちtextbfslender オブジェクトの特定タイプの検出について検討する。
古典的物体検出法では、細い物体に対してのみ評価される場合、COCO上の18.9%のmAPの劇的な低下が観察される。
論文 参考訳(メタデータ) (2020-11-17T09:39:42Z) - Few-shot Object Detection with Self-adaptive Attention Network for
Remote Sensing Images [11.938537194408669]
本報告では, ごく一部の例で提供される新しい物体を検出するために設計された, 数発の物体検出器を提案する。
対象物検出設定に適合するため,本提案では,全画像ではなく対象物レベルの関係に焦点を合わせている。
本実験は, 撮影シーンにおける提案手法の有効性を実証するものである。
論文 参考訳(メタデータ) (2020-09-26T13:44:58Z) - Few-shot Object Detection with Feature Attention Highlight Module in
Remote Sensing Images [10.92844145381214]
本報告では, ごく少数の例に基づいて, 新規な物体を検出するために設計された, 数発の物体検出器を提案する。
我々のモデルは、特徴抽出器、特徴強調強調モジュール、および2段階検出バックエンドで構成されている。
提案手法の有効性を示す実験を行った。
論文 参考訳(メタデータ) (2020-09-03T12:38:49Z) - Any-Shot Object Detection [81.88153407655334]
「アニーショット検出」とは、全く見えず、数発のカテゴリが推論中に同時に共起できる場所である。
我々は、ゼロショットと少数ショットの両方のオブジェクトクラスを同時に検出できる、統合された任意のショット検出モデルを提案する。
我々のフレームワークは、ゼロショット検出とFewショット検出タスクにのみ使用できる。
論文 参考訳(メタデータ) (2020-03-16T03:43:15Z) - Progressive Object Transfer Detection [84.48927705173494]
本稿では,新しいプログレッシブオブジェクト転送検出(POTD)フレームワークを提案する。
第一に、POTDは様々なドメインの様々なオブジェクトを効果的にプログレッシブな検出手順に活用することができる。
第2に、POTDは2つの微妙な転送段階、すなわち、LSTD(low-Shot Transfer Detection)とWSTD(Weakly Supervised Transfer Detection)から構成される。
論文 参考訳(メタデータ) (2020-02-12T00:16:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。