Discrete Hilbert Space, the Born Rule, and Quantum Gravity
- URL: http://arxiv.org/abs/2007.12938v1
- Date: Sat, 25 Jul 2020 14:13:04 GMT
- Title: Discrete Hilbert Space, the Born Rule, and Quantum Gravity
- Authors: Stephen D.H. Hsu
- Abstract summary: Quantum gravitational effects suggest a minimal length, or spacetime interval, of order the Planck length.
This in turn suggests that Hilbert space itself may be discrete rather than continuous.
We discuss this in the context of quantum gravity, showing that discrete models indeed suggest a discrete Hilbert space with minimum norm.
- Score: 0.21320960069210473
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum gravitational effects suggest a minimal length, or spacetime
interval, of order the Planck length. This in turn suggests that Hilbert space
itself may be discrete rather than continuous. One implication is that quantum
states with norm below some very small threshold do not exist. The exclusion of
what Everett referred to as maverick branches is necessary for the emergence of
the Born Rule in no collapse quantum mechanics. We discuss this in the context
of quantum gravity, showing that discrete models (such as simplicial or lattice
quantum gravity) indeed suggest a discrete Hilbert space with minimum norm.
These considerations are related to the ultimate level of fine-graining found
in decoherent histories (of spacetime geometry plus matter fields) produced by
quantum gravity.
Related papers
- Table-top nanodiamond interferometer enabling quantum gravity tests [34.82692226532414]
We present a feasibility study for a table-top nanodiamond-based interferometer.
By relying on quantum superpositions of steady massive objects our interferometer may allow exploiting just small-range electromagnetic fields.
arXiv Detail & Related papers (2024-05-31T17:20:59Z) - Is Planckian discreteness observable in cosmology? [47.03992469282679]
A Planck scale inflationary era produces the scale invariant spectrum of inhomogeneities with very small tensor-to-scalar ratio of perturbations.
Here we evoke the possibility that some of the major puzzles in cosmology would have an explanation rooted in quantum gravity.
arXiv Detail & Related papers (2024-05-21T06:53:37Z) - Continuous percolation in a Hilbert space for a large system of qubits [58.720142291102135]
The percolation transition is defined through the appearance of the infinite cluster.
We show that the exponentially increasing dimensionality of the Hilbert space makes its covering by finite-size hyperspheres inefficient.
Our approach to the percolation transition in compact metric spaces may prove useful for its rigorous treatment in other contexts.
arXiv Detail & Related papers (2022-10-15T13:53:21Z) - Constraint Inequalities from Hilbert Space Geometry & Efficient Quantum
Computation [0.0]
Useful relations describing arbitrary parameters of given quantum systems can be derived from simple physical constraints imposed on the vectors in the corresponding Hilbert space.
We describe the procedure and point out that this parallels the necessary considerations that make Quantum Simulation of quantum fields possible.
We suggest how to use these ideas to guide and improve parameterized quantum circuits.
arXiv Detail & Related papers (2022-10-13T22:13:43Z) - Quantum Physics from Number Theory [0.0]
Quantum properties are derived from number theoretic attributes of trigonometric functions applied to an explicitly ensemble-based representation of Hilbert states.
Quantum mechanics is itself a singular limit of this number-theoretic model at $p=infty$.
arXiv Detail & Related papers (2022-09-12T19:04:14Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Discretised Hilbert Space and Superdeterminism [0.0]
In computational physics it is standard to approximate continuum systems with discretised representations.
We consider a specific discretisation of the continuum complex Hilbert space of quantum mechanics.
arXiv Detail & Related papers (2022-04-07T18:00:07Z) - Is spacetime quantum? [0.0]
We show a theorem stating that spacetime degrees of freedom and a quantum system violate a Bell inequality in a background Minkowski spacetime.
We argue that this implies that spacetime cannot be sensibly called classical if the assumptions in our theorem hold.
arXiv Detail & Related papers (2021-09-06T17:13:51Z) - Ruling out real-valued standard formalism of quantum theory [19.015836913247288]
A quantum game has been developed to distinguish standard quantum theory from its real-number analog.
We experimentally implement the quantum game based on entanglement swapping with a state-of-the-art fidelity of 0.952(1).
Our results disprove the real-number formulation and establish the indispensable role of complex numbers in the standard quantum theory.
arXiv Detail & Related papers (2021-03-15T03:56:13Z) - Schr\"odinger's cat for de Sitter spacetime [0.0]
We provide a new phenomenological description for the response of quantum probes on a spacetime manifold in quantum superpositions.
Applying this approach to static de Sitter space, we discover scenarios in which the effects produced by the quantum spacetime are operationally indistinguishable from those induced by superpositions of Rindler trajectories in Minkowski spacetime.
The distinguishability of such quantum spacetimes from superpositions of trajectories in flat space reduces to the equivalence or non-equivalence of the field correlations between the superposed amplitudes.
arXiv Detail & Related papers (2020-12-18T02:54:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.