論文の概要: Verification of graph states in an untrusted network
- arxiv url: http://arxiv.org/abs/2007.13126v2
- Date: Fri, 13 May 2022 14:38:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-08 04:39:01.210135
- Title: Verification of graph states in an untrusted network
- Title(参考訳): 信頼できないネットワークにおけるグラフ状態の検証
- Authors: Anupama Unnikrishnan, Damian Markham
- Abstract要約: 我々は、信頼できない情報源が生成し、おそらく不名誉な関係者のネットワーク間で共有されるグラフ状態の検証について検討する。
これは、様々な分散タスクに対するグラフ状態の適用の証明に影響を及ぼす。
有用なグラフ状態の大規模なファミリに対して,グローバルに効率的なプロトコルを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph states are a large class of multipartite entangled quantum states that
form the basis of schemes for quantum computation, communication, error
correction, metrology, and more. In this work, we consider verification of
graph states generated by an untrusted source and shared between a network of
possibly dishonest parties. This has implications in certifying the application
of graph states for various distributed tasks. We present a protocol which is
globally efficient for a large family of useful graph states, including cluster
states, GHZ states, cycle graph states and more. For general graph states,
efficiency with respect to the security parameter is maintained, though there
is a cost increase with the size of the graph state. The protocols are
practical, requiring only multiple copies of the graph state, local
measurements and classical communication.
- Abstract(参考訳): グラフ状態は、量子計算、通信、誤り訂正、気象学などのスキームの基礎を形成する多部量子状態の大規模なクラスである。
本研究では,信頼できない情報源が生成し,不当な当事者のネットワーク間で共有されるグラフ状態の検証について検討する。
これは、様々な分散タスクに対するグラフ状態の適用の証明に影響を及ぼす。
本稿では,クラスタ状態,GHZ状態,サイクルグラフ状態など,有用なグラフ状態の大規模なファミリーに対して,グローバルに効率的なプロトコルを提案する。
一般的なグラフ状態の場合、セキュリティパラメータに関する効率性は維持されるが、グラフ状態のサイズによってコストが増加する。
プロトコルは実用的であり、グラフ状態のコピー、局所測定、古典的な通信のみを必要とする。
関連論文リスト
- Distinguishing Graph States by the Properties of Their Marginals [0.0]
グラフの辺構造に基づいて、計算が容易なLU不変量の族を導入する。
これらの不変量は、8量子ビット以下の全てのグラフ状態の全てのLU軌道と絡み合いクラスを一意に識別できることを示す。
また、より多くのノードを持つ絡み合いクラスの例についても論じる。
論文 参考訳(メタデータ) (2024-06-14T12:03:10Z) - Graph Coarsening with Message-Passing Guarantees [10.02138130221506]
提案手法は,信号の保存に関する理論的保証を示す,粗いグラフに特有な新しいメッセージパッシング操作を提案する。
我々は合成データと実データに対してノード分類タスクを行い、粗いグラフ上で単純メッセージパッシングを行うのと比べて改善された結果を観察する。
論文 参考訳(メタデータ) (2024-05-28T12:39:24Z) - Multipartite Entanglement Distribution in Quantum Networks using Subgraph Complementations [9.32782060570252]
量子ネットワーク上でグラフ状態を分散する新しい手法を提案する。
グラフ状態の分布は,部分グラフ補完システムによって特徴づけられることを示す。
任意のグラフ状態の分配に最適な部分グラフ補完演算の列を求める。
論文 参考訳(メタデータ) (2023-08-25T23:03:25Z) - Graph-theoretical optimization of fusion-based graph state generation [0.0]
我々は,PythonパッケージのOpsGraphStateとともに,任意のグラフ状態の融合ベースの生成を効果的に最適化するグラフ理論戦略を提案する。
我々の戦略は、対象のグラフ状態を単純化し、融合ネットワークを構築し、融合の順序を決定する3つの段階からなる。
論文 参考訳(メタデータ) (2023-04-24T10:46:54Z) - You Only Transfer What You Share: Intersection-Induced Graph Transfer
Learning for Link Prediction [79.15394378571132]
従来見過ごされていた現象を調査し、多くの場合、元のグラフに対して密に連結された補グラフを見つけることができる。
より密度の高いグラフは、選択的で有意義な知識を伝達するための自然なブリッジを提供する元のグラフとノードを共有することができる。
この設定をグラフインターセクション誘導トランスファーラーニング(GITL)とみなし,eコマースや学術共同オーサシップ予測の実践的応用に動機づけられた。
論文 参考訳(メタデータ) (2023-02-27T22:56:06Z) - Semi-Supervised Hierarchical Graph Classification [54.25165160435073]
ノードがグラフのインスタンスである階層グラフにおけるノード分類問題について検討する。
本稿では階層グラフ相互情報(HGMI)を提案し,理論的保証をもってHGMIを計算する方法を提案する。
本稿では,この階層グラフモデリングとSEAL-CI法がテキストおよびソーシャルネットワークデータに与える影響を実証する。
論文 参考訳(メタデータ) (2022-06-11T04:05:29Z) - Efficient tensor network simulation of quantum many-body physics on
sparse graphs [0.0]
疎結合な基礎グラフ上に定義されたテンソルネットワーク状態について検討する。
メッセージパッシング推論アルゴリズムは、局所的な期待値の効率的な計算に繋がる可能性がある。
論文 参考訳(メタデータ) (2022-06-09T18:00:03Z) - Distributed Graph Learning with Smooth Data Priors [61.405131495287755]
本稿では,ノード上の信号観測からグラフを推論する分散グラフ学習アルゴリズムを提案する。
この結果から,分散手法は,推定グラフの精度を損なうことなく,集中型アルゴリズムよりも通信コストが低いことがわかった。
論文 参考訳(メタデータ) (2021-12-11T00:52:02Z) - Spectral Embedding of Graph Networks [76.27138343125985]
ローカルノードの類似性と接続性、グローバル構造をトレードオフする教師なしグラフ埋め込みを導入する。
埋め込みは一般化されたグラフ Laplacian に基づいており、固有ベクトルは1つの表現においてネットワーク構造と近傍近傍の両方をコンパクトにキャプチャする。
論文 参考訳(メタデータ) (2020-09-30T04:59:10Z) - Natural Graph Networks [80.77570956520482]
より一般的な自然性の概念がグラフネットワークを適切に定義するのに十分であることを示す。
グローバルおよびローカルな自然グラフネットワークを定義し、後者は従来のメッセージパッシンググラフニューラルネットワークと同じくらいスケーラブルである。
論文 参考訳(メタデータ) (2020-07-16T14:19:06Z) - Inverse Graph Identification: Can We Identify Node Labels Given Graph
Labels? [89.13567439679709]
グラフ識別(GI)は、グラフ学習において長い間研究されており、特定の応用において不可欠である。
本稿では,逆グラフ識別(Inverse Graph Identification, IGI)と呼ばれる新しい問題を定義する。
本稿では,グラフアテンションネットワーク(GAT)を用いたノードレベルのメッセージパッシング処理を,GIのプロトコルの下でシンプルかつ効果的に行う方法を提案する。
論文 参考訳(メタデータ) (2020-07-12T12:06:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。