Resource-rational Task Decomposition to Minimize Planning Costs
- URL: http://arxiv.org/abs/2007.13862v1
- Date: Mon, 27 Jul 2020 20:59:26 GMT
- Title: Resource-rational Task Decomposition to Minimize Planning Costs
- Authors: Carlos G. Correa, Mark K. Ho, Fred Callaway, Thomas L. Griffiths
- Abstract summary: People often plan hierarchically. That is, rather than planning over a monolithic representation of a task, they decompose the task into simpler subtasks and then plan to accomplish those.
Here, we propose that people decompose tasks in a manner that facilitates efficient use of limited cognitive resources given the structure of the environment and their own planning algorithms.
Our account provides a normative explanation for how people identify subtasks as well as a framework for studying how people reason, plan, and act using resource-rational representations.
- Score: 10.178049366671505
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: People often plan hierarchically. That is, rather than planning over a
monolithic representation of a task, they decompose the task into simpler
subtasks and then plan to accomplish those. Although much work explores how
people decompose tasks, there is less analysis of why people decompose tasks in
the way they do. Here, we address this question by formalizing task
decomposition as a resource-rational representation problem. Specifically, we
propose that people decompose tasks in a manner that facilitates efficient use
of limited cognitive resources given the structure of the environment and their
own planning algorithms. Using this model, we replicate several existing
findings. Our account provides a normative explanation for how people identify
subtasks as well as a framework for studying how people reason, plan, and act
using resource-rational representations.
Related papers
- Identifying Selections for Unsupervised Subtask Discovery [12.22188797558089]
We provide a theory to identify, and experiments to verify the existence of selection variables in data.
These selections serve as subgoals that indicate subtasks and guide policy.
In light of this idea, we develop a sequential non-negative matrix factorization (seq- NMF) method to learn these subgoals and extract meaningful behavior patterns as subtasks.
arXiv Detail & Related papers (2024-10-28T23:47:43Z) - Unified Task and Motion Planning using Object-centric Abstractions of
Motion Constraints [56.283944756315066]
We propose an alternative TAMP approach that unifies task and motion planning into a single search.
Our approach is based on an object-centric abstraction of motion constraints that permits leveraging the computational efficiency of off-the-shelf AI search to yield physically feasible plans.
arXiv Detail & Related papers (2023-12-29T14:00:20Z) - Learning Top-k Subtask Planning Tree based on Discriminative Representation Pre-training for Decision Making [9.302910360945042]
Planning with prior knowledge extracted from complicated real-world tasks is crucial for humans to make accurate decisions.
We introduce a multiple-encoder and individual-predictor regime to learn task-essential representations from sufficient data for simple subtasks.
We also use the attention mechanism to generate a top-k subtask planning tree, which customizes subtask execution plans in guiding complex decisions on unseen tasks.
arXiv Detail & Related papers (2023-12-18T09:00:31Z) - Learning adaptive planning representations with natural language
guidance [90.24449752926866]
This paper describes Ada, a framework for automatically constructing task-specific planning representations.
Ada interactively learns a library of planner-compatible high-level action abstractions and low-level controllers adapted to a particular domain of planning tasks.
arXiv Detail & Related papers (2023-12-13T23:35:31Z) - Robot Task Planning Based on Large Language Model Representing Knowledge
with Directed Graph Structures [2.3698227130544547]
We propose a task planning method that combines human expertise with an LLM and have designed an LLM prompt template, Think_Net_Prompt.
We further propose a method to progressively decompose tasks and generate a task tree to reduce the planning volume for each task.
arXiv Detail & Related papers (2023-06-08T13:10:00Z) - Humans decompose tasks by trading off utility and computational cost [10.366866096121347]
Human behavior emerges from planning over elaborate decompositions of tasks into goals, subgoals, and low-level actions.
We propose and evaluate a normative framework for task decomposition based on the simple idea that people decompose tasks to reduce the overall cost of planning.
arXiv Detail & Related papers (2022-11-07T22:45:46Z) - Decomposed Prompting: A Modular Approach for Solving Complex Tasks [55.42850359286304]
We propose Decomposed Prompting to solve complex tasks by decomposing them (via prompting) into simpler sub-tasks.
This modular structure allows each prompt to be optimized for its specific sub-task.
We show that the flexibility and modularity of Decomposed Prompting allows it to outperform prior work on few-shot prompting.
arXiv Detail & Related papers (2022-10-05T17:28:20Z) - Fast Inference and Transfer of Compositional Task Structures for
Few-shot Task Generalization [101.72755769194677]
We formulate it as a few-shot reinforcement learning problem where a task is characterized by a subtask graph.
Our multi-task subtask graph inferencer (MTSGI) first infers the common high-level task structure in terms of the subtask graph from the training tasks.
Our experiment results on 2D grid-world and complex web navigation domains show that the proposed method can learn and leverage the common underlying structure of the tasks for faster adaptation to the unseen tasks.
arXiv Detail & Related papers (2022-05-25T10:44:25Z) - Learning Task Decomposition with Ordered Memory Policy Network [73.3813423684999]
We propose Ordered Memory Policy Network (OMPN) to discover subtask hierarchy by learning from demonstration.
OMPN can be applied to partially observable environments and still achieve higher task decomposition performance.
Our visualization confirms that the subtask hierarchy can emerge in our model.
arXiv Detail & Related papers (2021-03-19T18:13:35Z) - Task Scoping: Generating Task-Specific Abstractions for Planning [19.411900372400183]
Planning to solve any specific task using an open-scope world model is computationally intractable.
We propose task scoping: a method that exploits knowledge of the initial condition, goal condition, and transition-dynamics structure of a task.
We prove that task scoping never deletes relevant factors or actions, characterize its computational complexity, and characterize the planning problems for which it is especially useful.
arXiv Detail & Related papers (2020-10-17T21:19:25Z) - Hierarchical Reinforcement Learning as a Model of Human Task
Interleaving [60.95424607008241]
We develop a hierarchical model of supervisory control driven by reinforcement learning.
The model reproduces known empirical effects of task interleaving.
The results support hierarchical RL as a plausible model of task interleaving.
arXiv Detail & Related papers (2020-01-04T17:53:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.