Dynamic modulation of phonon-assisted transitions in quantum defects in
monolayer transition-metal dichalcogenide semiconductors
- URL: http://arxiv.org/abs/2007.14399v1
- Date: Tue, 28 Jul 2020 18:00:00 GMT
- Title: Dynamic modulation of phonon-assisted transitions in quantum defects in
monolayer transition-metal dichalcogenide semiconductors
- Authors: Chitraleema Chakraborty, Christopher J. Ciccarino and Prineha Narang
- Abstract summary: We study the effect of spin-orbit coupling on the electron-phonon interaction in a single chalcogen vacancy defect.
We find that spin-orbit tune the magnitude of the electron-phonon coupling in both optical and charge-state transitions of the defect.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum localization via atomic point defects in semiconductors is of
significant fundamental and technological importance. Quantum defects in
monolayer transition-metal dichalcogenide semiconductors have been proposed as
stable and scalable optically-addressable spin qubits. Yet, the impact of
strong spin-orbit coupling on their dynamical response, for example under
optical excitation, has remained elusive. In this context, we study the effect
of spin-orbit coupling on the electron-phonon interaction in a single chalcogen
vacancy defect in monolayer transition metal dichalcogenides, molybdenum
disulfide (MoS$_2$) and tungsten disulfide (WS$_2$). From ab initio electronic
structure theory calculations, we find that spin-orbit interactions tune the
magnitude of the electron-phonon coupling in both optical and charge-state
transitions of the defect, modulating their respective efficiencies. This
observation opens up a promising scheme of dynamically modulating material
properties to tune the local behavior of a quantum defect.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Two-tone modulated cavity electromagnonics [0.0]
Two-tone modulated cavity electromagnonics can prepare macroscopic magnonic quantum states.
Ultra-sensitive magnon-based sensing can be realized by engineering backaction-evading interaction of magnons and photons.
arXiv Detail & Related papers (2023-05-18T02:20:02Z) - On the Su-Schrieffer-Heeger model of electron transport: low-temperature
optical conductivity by the Mellin transform [62.997667081978825]
We describe the low-temperature optical conductivity as a function of frequency for a quantum-mechanical system of electrons that hop along a polymer chain.
Our goal is to show vias how the interband conductivity of this system behaves as the smallest energy bandgap tends to close.
arXiv Detail & Related papers (2022-09-26T23:17:39Z) - Review on coherent quantum emitters in hexagonal boron nitride [91.3755431537592]
I discuss the state-of-the-art of defect centers in hexagonal boron nitride with a focus on optically coherent defect centers.
The spectral transition linewidth remains unusually narrow even at room temperature.
The field is put into a broad perspective with impact on quantum technology such as quantum optics, quantum photonics as well as spin optomechanics.
arXiv Detail & Related papers (2022-01-31T12:49:43Z) - Nonequilibrium phase transition in a driven-dissipative quantum
antiferromagnet [0.0]
This paper provides a numerical study of dynamical phases and the transitions between them in the nonequilibrium steady state of the prototypical two-dimensional Heisenberg antiferromagnet with drive and dissipation.
A finite-size analysis reveals static and dynamical critical scaling at the transition, with a discontinuous slope of the magnon number versus driving field strength and critical slowing down at the transition point.
arXiv Detail & Related papers (2021-07-08T13:35:00Z) - Nonperturbative Waveguide Quantum Electrodynamics [0.0]
We study in and out of equilibrium properties of waveguide quantum electrodynamics.
We uncover several surprising features ranging from symmetry-protected many-body bound states in the continuum to strong renormalization of the effective mass.
Results are relevant to experiments in superconducting qubits interacting with microwave resonators or coupled atoms to photonic crystals.
arXiv Detail & Related papers (2021-05-18T21:15:57Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Superradiant phase transition with cavity assisted dynamical spin-orbit
coupling [2.234476443495425]
We consider the cavity assisted dynamical spin-orbit coupling which comes from the combination of these two effects.
atom decay suppresses the singularity of the phase diagram and the nonlinear coupling can break the symmetric properties of the phase transition.
Our work provide the theoretical methods to research the rich quantum phenomena in this dynamic many-body systems.
arXiv Detail & Related papers (2020-12-18T08:17:00Z) - Spin Structure and Resonant Driving of Spin-1/2 Defects in SiC [0.0]
Transition metal (TM) defects in silicon carbide have favorable spin coherence properties.
We model TM defects that have one active electron with spin 1/2 in the atomic $D$ shell.
We find that the spin-orbit coupling leads to additional allowed transitions and a modification of the $g$-tensor.
arXiv Detail & Related papers (2020-11-19T17:38:10Z) - Photon Condensation and Enhanced Magnetism in Cavity QED [68.8204255655161]
A system of magnetic molecules coupled to microwave cavities undergoes the equilibrium superradiant phase transition.
The effect of the coupling is first illustrated by the vacuum-induced ferromagnetic order in a quantum Ising model.
A transmission experiment is shown to resolve the transition, measuring the quantum electrodynamical control of magnetism.
arXiv Detail & Related papers (2020-11-07T11:18:24Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.