Superradiant phase transition with cavity assisted dynamical spin-orbit
coupling
- URL: http://arxiv.org/abs/2012.10098v1
- Date: Fri, 18 Dec 2020 08:17:00 GMT
- Title: Superradiant phase transition with cavity assisted dynamical spin-orbit
coupling
- Authors: Ying Lei, and Shaoliang Zhang
- Abstract summary: We consider the cavity assisted dynamical spin-orbit coupling which comes from the combination of these two effects.
atom decay suppresses the singularity of the phase diagram and the nonlinear coupling can break the symmetric properties of the phase transition.
Our work provide the theoretical methods to research the rich quantum phenomena in this dynamic many-body systems.
- Score: 2.234476443495425
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Superradiant phase transition represents an important quantum phenomenon that
shows the collective excitations based on the coupling between atoms and cavity
modes. The spin-orbit coupling is another quantum effect which induced from the
interaction of the atom internal degrees of freedom and momentum of
center-of-mass. In this work, we consider the cavity assisted dynamical
spin-orbit coupling which comes from the combination of these two effects. It
can induce a series of interesting quantum phenomena, such as the flat spectrum
and the singularity of the excitation energy spectrum around the critical point
of quantum phase transition. We further discuss the influence of atom decay and
nonlinear coupling to the phase diagram. The atom decay suppresses the
singularity of the phase diagram and the nonlinear coupling can break the
symmetric properties of the phase transition. Our work provide the theoretical
methods to research the rich quantum phenomena in this dynamic many-body
systems.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - Chirality-induced emergent spin-orbit coupling in topological atomic
lattices [0.0]
We show that photonic excitations in pseudospin-1/2 atomic lattices exhibit an emergent spin-orbit coupling when the geometry is chiral.
Our results demonstrate that chiral atom arrays are a robust platform for realizing spin-orbit coupled topological states of matter.
arXiv Detail & Related papers (2023-11-15T19:00:13Z) - Atomic excitation trapping in dissimilar chirally-coupled atomic arrays [0.0]
Atomic array coupled to a one-dimensional nanophotonic waveguide allows photon-mediated dipole-dipole interactions and nonreciprocal decay channels.
We study the atomic excitation dynamics and its transport property, specifically at an interface of dissimilar atomic arrays.
Our results can provide insights to nonequilibrium quantum dynamics in dissimilar arrays and shed light on confining and controlling quantum registers useful for quantum information processing.
arXiv Detail & Related papers (2023-11-10T07:18:53Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Dynamical preparation of stripe states in spin-orbit coupled gases [0.0]
In spinor Bose-Einstein condensates, spin-changing collisions are a remarkable proxy to coherently realize macroscopic many-body quantum states.
We show that, at weak couplings, such modulation of the collisions leads to an effective Hamiltonian.
We propose a robust protocol to coherently drive the spin-orbit coupled condensate into the ferromagnetic stripe phase.
arXiv Detail & Related papers (2021-01-20T18:54:53Z) - Photon Condensation and Enhanced Magnetism in Cavity QED [68.8204255655161]
A system of magnetic molecules coupled to microwave cavities undergoes the equilibrium superradiant phase transition.
The effect of the coupling is first illustrated by the vacuum-induced ferromagnetic order in a quantum Ising model.
A transmission experiment is shown to resolve the transition, measuring the quantum electrodynamical control of magnetism.
arXiv Detail & Related papers (2020-11-07T11:18:24Z) - Many-Body Phases of a Planar Bose-Einstein Condensate with
Cavity-Induced Spin-Orbit Coupling [0.0]
We explore the many-body phases of a two-dimensional Bose-Einstein condensate with cavity-mediated spin-orbit coupling.
By the help of two transverse non-interfering, counterpropagating pump lasers and a single standing-wave cavity mode, two degenerate Zeeman sub-levels of the quantum gas are Raman coupled in a double-$Lambda$-configuration.
We identify three quantum phases with distinct atomic and photonic properties: the normal homogeneous'' phase, the superradiant spin-helix'' phase, and the superradiant
arXiv Detail & Related papers (2020-09-14T14:31:47Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.