論文の概要: Video compression with low complexity CNN-based spatial resolution
adaptation
- arxiv url: http://arxiv.org/abs/2007.14726v1
- Date: Wed, 29 Jul 2020 10:20:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-05 20:10:40.456930
- Title: Video compression with low complexity CNN-based spatial resolution
adaptation
- Title(参考訳): 低複雑性CNNを用いた空間分解能適応映像圧縮
- Authors: Di Ma, Fan Zhang and David R. Bull
- Abstract要約: 空間分解能適応は、全体的な符号化性能を改善するために、ビデオ圧縮に組み込むことができる。
エンコーダとデコーダ間の複雑性の柔軟な割り当てをサポートする新しいフレームワークが提案されている。
- 参考スコア(独自算出の注目度): 15.431248645312309
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: It has recently been demonstrated that spatial resolution adaptation can be
integrated within video compression to improve overall coding performance by
spatially down-sampling before encoding and super-resolving at the decoder.
Significant improvements have been reported when convolutional neural networks
(CNNs) were used to perform the resolution up-sampling. However, this approach
suffers from high complexity at the decoder due to the employment of CNN-based
super-resolution. In this paper, a novel framework is proposed which supports
the flexible allocation of complexity between the encoder and decoder. This
approach employs a CNN model for video down-sampling at the encoder and uses a
Lanczos3 filter to reconstruct full resolution at the decoder. The proposed
method was integrated into the HEVC HM 16.20 software and evaluated on JVET UHD
test sequences using the All Intra configuration. The experimental results
demonstrate the potential of the proposed approach, with significant bitrate
savings (more than 10%) over the original HEVC HM, coupled with reduced
computational complexity at both encoder (29%) and decoder (10%).
- Abstract(参考訳): 近年,デコーダでの符号化と超解像の前に,空間分解能適応をビデオ圧縮に組み込むことで,全体の符号化性能を向上させることが実証されている。
畳み込みニューラルネットワーク(convolutional neural networks, convolutional neural networks, cnns)は、解像度アップサンプリングを行うために使用される。
しかし、このアプローチはcnnベースのスーパーレゾリューションの雇用のためにデコーダでは高い複雑さに苦しむ。
本稿では,エンコーダとデコーダ間の複雑性の柔軟な割り当てを支援する新しいフレームワークを提案する。
このアプローチでは、エンコーダでのビデオダウンサンプリングにcnnモデルを使用し、lanczos3フィルタを使用してデコーダの完全な解像度を再構築する。
提案手法はHEVC HM 16.20ソフトウェアに統合され、全内部構成を用いてJVET UHDテストシーケンスで評価された。
実験の結果,従来のhevc hmに比べてビットレートが10%以上削減され,エンコーダ(29%)とデコーダ(10%)の両方での計算複雑性が低下する可能性が示された。
関連論文リスト
- Standard compliant video coding using low complexity, switchable neural wrappers [8.149130379436759]
標準互換性、高性能、低復号化の複雑さを特徴とする新しいフレームワークを提案する。
私たちは、標準的なビデオをラップして、異なる解像度でビデオをエンコードする、共同最適化されたニューラルプリプロセッサとポストプロセッサのセットを使用します。
我々は、異なるアップサンプリング比を処理できる低複雑性のニューラルポストプロセッサアーキテクチャを設計する。
論文 参考訳(メタデータ) (2024-07-10T06:36:45Z) - Video Compression with Arbitrary Rescaling Network [8.489428003916622]
符号化前のビデオリサイズのためのレート誘導任意再スケーリングネットワーク(RARN)を提案する。
軽量RARN構造は、FHD(1080p)コンテンツをリアルタイム(91 FPS)で処理し、かなりのレート低下を得ることができる。
論文 参考訳(メタデータ) (2023-06-07T07:15:18Z) - Learned Video Compression via Heterogeneous Deformable Compensation
Network [78.72508633457392]
不安定な圧縮性能の問題に対処するために,不均一変形補償戦略(HDCVC)を用いた学習ビデオ圧縮フレームワークを提案する。
より具体的には、提案アルゴリズムは隣接する2つのフレームから特徴を抽出し、コンテンツ近傍の不均一な変形(HetDeform)カーネルオフセットを推定する。
実験結果から,HDCVCは最近の最先端の学習ビデオ圧縮手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-07-11T02:31:31Z) - Efficient VVC Intra Prediction Based on Deep Feature Fusion and
Probability Estimation [57.66773945887832]
本稿では,フレーム内予測におけるVersatile Video Coding (VVC) の複雑性を,深層融合と確率推定の2段階のフレームワークを用いて最適化することを提案する。
特に高精細度(HD)および超高精細度(UHD)ビデオシーケンスにおいて,提案手法の優位性を示す実験結果が得られた。
論文 参考訳(メタデータ) (2022-05-07T08:01:32Z) - Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder [73.48927855855219]
本稿では,エンコーダとデコーダの両端に内在するニューラル表現を強化することで,符号化性能の向上を図るシステムを提案する。
実験により,提案手法はJPEGに対する速度歪み性能を,様々な品質指標で改善することを示した。
論文 参考訳(メタデータ) (2022-01-27T20:20:03Z) - Small Lesion Segmentation in Brain MRIs with Subpixel Embedding [105.1223735549524]
ヒト脳のMRIスキャンを虚血性脳梗塞と正常組織に分割する方法を提案する。
本稿では,空間展開埋め込みネットワークによって予測を導出する標準エンコーダデコーダの形式でニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-09-18T00:21:17Z) - Dynamic Neural Representational Decoders for High-Resolution Semantic
Segmentation [98.05643473345474]
動的ニューラル表現デコーダ(NRD)と呼ばれる新しいデコーダを提案する。
エンコーダの出力上の各位置がセマンティックラベルの局所的なパッチに対応するので、この研究では、これらの局所的なパッチをコンパクトなニューラルネットワークで表現する。
このニューラル表現により、意味ラベル空間に先行する滑らかさを活用することができ、デコーダをより効率的にすることができる。
論文 参考訳(メタデータ) (2021-07-30T04:50:56Z) - Perceptually-inspired super-resolution of compressed videos [18.72040343193715]
空間分解能適応は、符号化効率を高めるためにしばしばビデオ圧縮に使用される技法である。
近年の研究では、畳み込みニューラルネットワーク(CNN)に基づく高度な超解像法を用いて、再構築品質をさらに向上させている。
本稿では,CNNモデルを用いた圧縮映像の空間的アップサンプリングのために,知覚にインスパイアされた超解像法(M-SRGAN)を提案する。
論文 参考訳(メタデータ) (2021-06-15T13:50:24Z) - Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective
with Transformers [149.78470371525754]
セマンティックセグメンテーションをシーケンスからシーケンスへの予測タスクとして扱う。
具体的には、イメージをパッチのシーケンスとしてエンコードするために純粋なトランスをデプロイします。
トランスのすべての層でモデル化されたグローバルコンテキストにより、このエンコーダは、SETR(SEgmentation TRansformer)と呼ばれる強力なセグメンテーションモデルを提供するための単純なデコーダと組み合わせることができる。
SETRはADE20K(50.28% mIoU)、Pascal Context(55.83% mIoU)、およびCityscapesの競争力のある結果に関する最新技術を達成している。
論文 参考訳(メタデータ) (2020-12-31T18:55:57Z) - Decomposition, Compression, and Synthesis (DCS)-based Video Coding: A
Neural Exploration via Resolution-Adaptive Learning [30.54722074562783]
入力映像をそれぞれの空間テクスチャフレーム(STF)に分解する。
次に,一般的なビデオコーダを用いて圧縮する。
最後に,デコードされたSTFとTMFをネイティブ入力と同じ解像度で合成し,高品質なビデオ再構成を実現する。
論文 参考訳(メタデータ) (2020-12-01T17:23:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。