論文の概要: Connecting actuarial judgment to probabilistic learning techniques with
graph theory
- arxiv url: http://arxiv.org/abs/2007.15475v1
- Date: Wed, 29 Jul 2020 13:24:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-05 20:01:46.751418
- Title: Connecting actuarial judgment to probabilistic learning techniques with
graph theory
- Title(参考訳): 確率論的学習手法と確率的判断をグラフ理論で結びつける
- Authors: Roland R. Ramsahai
- Abstract要約: フォーマリズムは、非生命保険請求データのモデリングにおける応用に非常に有用である、と論じられている。
また, この手法の利点を活かすために, 現在のアクチュアリモデルを用いてグラフィカルに表現できることが示されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graphical models have been widely used in applications ranging from medical
expert systems to natural language processing. Their popularity partly arises
since they are intuitive representations of complex inter-dependencies among
variables with efficient algorithms for performing computationally intensive
inference in high-dimensional models. It is argued that the formalism is very
useful for applications in the modelling of non-life insurance claims data. It
is also shown that actuarial models in current practice can be expressed
graphically to exploit the advantages of the approach. More general models are
proposed within the framework to demonstrate the potential use of graphical
models for probabilistic learning with telematics and other dynamic actuarial
data. The discussion also demonstrates throughout that the intuitive nature of
the models allows the inclusion of qualitative knowledge or actuarial judgment
in analyses.
- Abstract(参考訳): グラフィックモデルは、医療専門家システムから自然言語処理まで幅広い用途で使われている。
それらの人気は、高次元モデルにおいて計算集約的な推論を行うための効率的なアルゴリズムを持つ変数間の複雑な相互依存の直感的な表現であるからである。
フォーマリズムは、非生命保険請求データのモデリングにおける応用に非常に有用である、と論じられている。
また, この手法の利点を活かすために, 現在のアクチュアリモデルを用いてグラフィカルに表現できることが示されている。
テレマティクスやその他の動的アクチュエーターデータを用いた確率的学習のためのグラフィカルモデルの可能性を示すため、フレームワーク内でより一般的なモデルが提案されている。
この議論は、モデルの直感的な性質が分析に質的知識や時間的判断を取り入れることを可能にすることも示している。
関連論文リスト
- Likelihood Based Inference in Fully and Partially Observed Exponential Family Graphical Models with Intractable Normalizing Constants [4.532043501030714]
マルコフ確率場を符号化する確率的グラフィカルモデルは、生成的モデリングの基本的な構成要素である。
本稿では,これらのモデルの全確率に基づく解析が,計算効率のよい方法で実現可能であることを示す。
論文 参考訳(メタデータ) (2024-04-27T02:58:22Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - A Novel Neural-symbolic System under Statistical Relational Learning [50.747658038910565]
本稿では,GBPGRと呼ばれる2段階の確率的グラフィカル推論フレームワークを提案する。
GBPGRでは、シンボル推論の結果を用いて、ディープラーニングモデルによる予測を洗練し、修正する。
提案手法は高い性能を示し, 帰納的タスクと帰納的タスクの両方において効果的な一般化を示す。
論文 参考訳(メタデータ) (2023-09-16T09:15:37Z) - Sparse Graphical Linear Dynamical Systems [1.6635799895254402]
時系列データセットは機械学習の中心であり、科学と工学の様々な分野に応用されている。
本研究は,共同グラフィカル・モデリング・フレームワークを導入することでギャップを埋める新しい手法を提案する。
本稿では,DGLASSOを提案する。DGLASSO,DGLASSO,DGLASSO,DGLASSO,DGLASSO,DGLASSO,DGLASSO,DGLASSO,DGLASSO,DGLASSO。
論文 参考訳(メタデータ) (2023-07-06T14:10:02Z) - Model-Based Deep Learning: On the Intersection of Deep Learning and
Optimization [101.32332941117271]
決定アルゴリズムは様々なアプリケーションで使われている。
数理モデルに頼らずにデータから調整された高度パラメトリックアーキテクチャを使用するディープラーニングアプローチが、ますます人気が高まっている。
モデルに基づく最適化とデータ中心のディープラーニングは、しばしば異なる規律とみなされる。
論文 参考訳(メタデータ) (2022-05-05T13:40:08Z) - Geometric and Topological Inference for Deep Representations of Complex
Networks [13.173307471333619]
我々は、トポロジと表現の幾何学を強調する統計のクラスを提示する。
モデル選択に使用する場合の感度と特異性の観点から,これらの統計値を評価する。
これらの新しい手法により、脳やコンピューター科学者は、脳やモデルによって学習された動的表現変換を可視化することができる。
論文 参考訳(メタデータ) (2022-03-10T17:14:14Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
現代のデータ科学では、どの部分がより良い結果を得るために置き換えられるかというモデルの性質を理解することがより興味深い。
合成データ駆動型モデル学習において,多目的進化最適化を用いてアルゴリズムの所望特性を求める。
論文 参考訳(メタデータ) (2021-07-07T11:17:09Z) - Distilling Interpretable Models into Human-Readable Code [71.11328360614479]
人間可読性は機械学習モデル解釈可能性にとって重要で望ましい標準である。
従来の方法を用いて解釈可能なモデルを訓練し,それを簡潔で可読なコードに抽出する。
本稿では,幅広いユースケースで効率的に,確実に高品質な結果を生成する分別線形曲線フィッティングアルゴリズムについて述べる。
論文 参考訳(メタデータ) (2021-01-21T01:46:36Z) - Causal Inference with Deep Causal Graphs [0.0]
パラメトリック因果モデリング技術は、カウンターファクト推定の機能を提供することはめったにない。
Deep Causal Graphsは、因果分布をモデル化するニューラルネットワークに必要な機能の抽象的な仕様である。
複雑な相互作用をモデル化する上で,その表現力を示し,機械学習の説明可能性と公正性を示す。
論文 参考訳(メタデータ) (2020-06-15T13:03:33Z) - Explainable Matrix -- Visualization for Global and Local
Interpretability of Random Forest Classification Ensembles [78.6363825307044]
本研究では,ランダムフォレスト (RF) 解釈のための新しい可視化手法である Explainable Matrix (ExMatrix) を提案する。
単純なマトリックスのようなメタファで、行はルール、列は特徴、セルはルールを述語する。
ExMatrixの適用性は、異なる例を通じて確認され、RFモデルの解釈可能性を促進するために実際にどのように使用できるかを示している。
論文 参考訳(メタデータ) (2020-05-08T21:03:48Z) - Amortized Bayesian model comparison with evidential deep learning [0.12314765641075436]
本稿では,専門的なディープラーニングアーキテクチャを用いたベイズモデルの比較手法を提案する。
提案手法は純粋にシミュレーションベースであり,観測された各データセットに対して,すべての代替モデルを明示的に適合させるステップを回避している。
提案手法は,本研究で検討した事例に対して,精度,キャリブレーション,効率の点で優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2020-04-22T15:15:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。