HMCNAS: Neural Architecture Search using Hidden Markov Chains and
Bayesian Optimization
- URL: http://arxiv.org/abs/2007.16149v1
- Date: Fri, 31 Jul 2020 16:04:08 GMT
- Title: HMCNAS: Neural Architecture Search using Hidden Markov Chains and
Bayesian Optimization
- Authors: Vasco Lopes and Lu\'is A. Alexandre
- Abstract summary: HMCNAS provides a step towards generalizing NAS, by providing a way to create competitive models, without requiring any human knowledge about the specific task.
- Score: 2.685668802278155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Architecture Search has achieved state-of-the-art performance in a
variety of tasks, out-performing human-designed networks. However, many
assumptions, that require human definition, related with the problems being
solved or the models generated are still needed: final model architectures,
number of layers to be sampled, forced operations, small search spaces, which
ultimately contributes to having models with higher performances at the cost of
inducing bias into the system. In this paper, we propose HMCNAS, which is
composed of two novel components: i) a method that leverages information about
human-designed models to autonomously generate a complex search space, and ii)
an Evolutionary Algorithm with Bayesian Optimization that is capable of
generating competitive CNNs from scratch, without relying on human-defined
parameters or small search spaces. The experimental results show that the
proposed approach results in competitive architectures obtained in a very short
time. HMCNAS provides a step towards generalizing NAS, by providing a way to
create competitive models, without requiring any human knowledge about the
specific task.
Related papers
- A Pairwise Comparison Relation-assisted Multi-objective Evolutionary Neural Architecture Search Method with Multi-population Mechanism [58.855741970337675]
Neural architecture search (NAS) enables re-searchers to automatically explore vast search spaces and find efficient neural networks.
NAS suffers from a key bottleneck, i.e., numerous architectures need to be evaluated during the search process.
We propose the SMEM-NAS, a pairwise com-parison relation-assisted multi-objective evolutionary algorithm based on a multi-population mechanism.
arXiv Detail & Related papers (2024-07-22T12:46:22Z) - DNA Family: Boosting Weight-Sharing NAS with Block-Wise Supervisions [121.05720140641189]
We develop a family of models with the distilling neural architecture (DNA) techniques.
Our proposed DNA models can rate all architecture candidates, as opposed to previous works that can only access a sub- search space using algorithms.
Our models achieve state-of-the-art top-1 accuracy of 78.9% and 83.6% on ImageNet for a mobile convolutional network and a small vision transformer, respectively.
arXiv Detail & Related papers (2024-03-02T22:16:47Z) - NASRec: Weight Sharing Neural Architecture Search for Recommender
Systems [40.54254555949057]
We propose NASRec, a paradigm that trains a single supernet and efficiently produces abundant models/sub-architectures by weight sharing.
Our results on three Click-Through Rates (CTR) prediction benchmarks show that NASRec can outperform both manually designed models and existing NAS methods.
arXiv Detail & Related papers (2022-07-14T20:15:11Z) - SuperNet in Neural Architecture Search: A Taxonomic Survey [14.037182039950505]
This survey focuses on the supernet optimization that builds a neural network that assembles all the architectures as its sub models by using weight sharing.
We aim to accomplish that by proposing them as solutions to the common challenges found in the literature: data-side optimization, poor rank correlation alleviation, and transferable NAS for a number of deployment scenarios.
arXiv Detail & Related papers (2022-04-08T08:29:52Z) - Towards Less Constrained Macro-Neural Architecture Search [2.685668802278155]
Neural Architecture Search (NAS) networks achieve state-of-the-art performance in a variety of tasks.
Most NAS methods rely heavily on human-defined assumptions that constrain the search.
We present experiments showing that LCMNAS generates state-of-the-art architectures from scratch with minimal GPU computation.
arXiv Detail & Related papers (2022-03-10T17:53:03Z) - One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search
Space Shrinking [97.60915598958968]
We propose a one-shot neural ensemble architecture search (NEAS) solution that addresses the two challenges.
For the first challenge, we introduce a novel diversity-based metric to guide search space shrinking.
For the second challenge, we enable a new search dimension to learn layer sharing among different models for efficiency purposes.
arXiv Detail & Related papers (2021-04-01T16:29:49Z) - BossNAS: Exploring Hybrid CNN-transformers with Block-wisely
Self-supervised Neural Architecture Search [100.28980854978768]
We present Block-wisely Self-supervised Neural Architecture Search (BossNAS)
We factorize the search space into blocks and utilize a novel self-supervised training scheme, named ensemble bootstrapping, to train each block separately.
We also present HyTra search space, a fabric-like hybrid CNN-transformer search space with searchable down-sampling positions.
arXiv Detail & Related papers (2021-03-23T10:05:58Z) - MS-RANAS: Multi-Scale Resource-Aware Neural Architecture Search [94.80212602202518]
We propose Multi-Scale Resource-Aware Neural Architecture Search (MS-RANAS)
We employ a one-shot architecture search approach in order to obtain a reduced search cost.
We achieve state-of-the-art results in terms of accuracy-speed trade-off.
arXiv Detail & Related papers (2020-09-29T11:56:01Z) - Progressive Automatic Design of Search Space for One-Shot Neural
Architecture Search [15.017964136568061]
It has been observed that a model with higher one-shot model accuracy does not necessarily perform better when stand-alone trained.
We propose Progressive Automatic Design of search space, named PAD-NAS.
In this way, PAD-NAS can automatically design the operations for each layer and achieve a trade-off between search space quality and model diversity.
arXiv Detail & Related papers (2020-05-15T14:21:07Z) - Neural Architecture Generator Optimization [9.082931889304723]
We are first to investigate casting NAS as a problem of finding the optimal network generator.
We propose a new, hierarchical and graph-based search space capable of representing an extremely large variety of network types.
arXiv Detail & Related papers (2020-04-03T06:38:07Z) - NAS-Count: Counting-by-Density with Neural Architecture Search [74.92941571724525]
We automate the design of counting models with Neural Architecture Search (NAS)
We introduce an end-to-end searched encoder-decoder architecture, Automatic Multi-Scale Network (AMSNet)
arXiv Detail & Related papers (2020-02-29T09:18:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.