論文の概要: Incorrect by Construction: Fine Tuning Neural Networks for Guaranteed
Performance on Finite Sets of Examples
- arxiv url: http://arxiv.org/abs/2008.01204v1
- Date: Mon, 3 Aug 2020 21:29:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-03 06:16:03.456570
- Title: Incorrect by Construction: Fine Tuning Neural Networks for Guaranteed
Performance on Finite Sets of Examples
- Title(参考訳): 構成による誤り:有限個の例集合における性能保証のための微調整ニューラルネットワーク
- Authors: Ivan Papusha, Rosa Wu, Joshua Brul\'e, Yanni Kouskoulas, Daniel Genin,
Aurora Schmidt
- Abstract要約: 本稿では,ReLUニューラルネットワークの重みを微調整するために,SMTソルバを用いた新しい手法を提案する。
我々は、MNISTネットワークを微調整して、特定の画像を誤って分類することで、このアプローチを実証する。
自由共有機械学習モデルの信頼性を損なうアプローチの可能性について議論する。
- 参考スコア(独自算出の注目度): 0.29360071145551064
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There is great interest in using formal methods to guarantee the reliability
of deep neural networks. However, these techniques may also be used to implant
carefully selected input-output pairs. We present initial results on a novel
technique for using SMT solvers to fine tune the weights of a ReLU neural
network to guarantee outcomes on a finite set of particular examples. This
procedure can be used to ensure performance on key examples, but it could also
be used to insert difficult-to-find incorrect examples that trigger unexpected
performance. We demonstrate this approach by fine tuning an MNIST network to
incorrectly classify a particular image and discuss the potential for the
approach to compromise reliability of freely-shared machine learning models.
- Abstract(参考訳): ディープニューラルネットワークの信頼性を保証するための形式的手法の利用には大きな関心がある。
しかし、これらの技術は慎重に選択された入出力ペアを移植するためにも用いられる。
本稿では、SMTソルバを用いてReLUニューラルネットワークの重みを微調整し、特定の例の有限集合に対する結果を保証する新しい手法に関する最初の結果を示す。
この手順は、主要な例のパフォーマンスを保証するために使用できるが、予期せぬパフォーマンスを引き起こす難しい不正確な例を挿入するためにも使用できる。
我々は、MNISTネットワークを微調整して、特定の画像を誤って分類し、自由共有機械学習モデルの信頼性を損なうアプローチの可能性について議論する。
関連論文リスト
- Tight Certified Robustness via Min-Max Representations of ReLU Neural
Networks [9.771011198361865]
制御システムにニューラルネットワークを確実に配置するには、厳格な堅牢性を保証する必要がある。
本稿では,ReLUニューラルネットワークの凸表現に対する強靭性証明を得る。
論文 参考訳(メタデータ) (2023-10-07T21:07:45Z) - Efficient Uncertainty Quantification and Reduction for
Over-Parameterized Neural Networks [23.7125322065694]
不確実性定量化(UQ)は、機械学習モデルの信頼性評価と強化に重要である。
統計学的に保証されたスキームを作成し、主に、過剰パラメータ化ニューラルネットワークの不確実性である、エンフェラクタライズし、エンフェレモーブする。
特に,PNC予測器(Procedural-noise-correcting, Procedural-noise-correcting, PNC)に基づくアプローチでは,適切なラベル付きデータセットでトレーニングされたEmphone補助ネットワークのみを用いることで,手続き的不確実性を取り除く。
論文 参考訳(メタデータ) (2023-06-09T05:15:53Z) - A Fair Loss Function for Network Pruning [70.35230425589592]
本稿では, 刈り込み時のバイアスの抑制に使用できる簡易な改良型クロスエントロピー損失関数である, 性能重み付き損失関数を提案する。
CelebA、Fitzpatrick17k、CIFAR-10データセットを用いた実験は、提案手法が単純で効果的なツールであることを実証している。
論文 参考訳(メタデータ) (2022-11-18T15:17:28Z) - Sample-Then-Optimize Batch Neural Thompson Sampling [50.800944138278474]
我々はトンプソンサンプリング(TS)ポリシーに基づくブラックボックス最適化のための2つのアルゴリズムを提案する。
入力クエリを選択するには、NNをトレーニングし、トレーニングされたNNを最大化してクエリを選択するだけです。
我々のアルゴリズムは、大きなパラメータ行列を逆転する必要性を助長するが、TSポリシーの妥当性は保たれている。
論文 参考訳(メタデータ) (2022-10-13T09:01:58Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - Bayesian Inference with Certifiable Adversarial Robustness [25.40092314648194]
ベイズ学習のレンズによる対向学習ネットワークについて考察する。
本稿では,ベイズニューラルネットワーク(BNN)の認証保証付き対数訓練のための基本的枠組みを提案する。
本手法は,認証済みBNNを直接訓練する最初の方法であり,安全クリティカルなアプリケーションでの使用を容易にする。
論文 参考訳(メタデータ) (2021-02-10T07:17:49Z) - Ensembles of Spiking Neural Networks [0.3007949058551534]
本稿では,最先端の結果を生み出すスパイクニューラルネットワークのアンサンブルを構築する方法について述べる。
MNIST, NMNIST, DVS Gestureデータセットの分類精度は98.71%, 100.0%, 99.09%である。
我々は、スパイキングニューラルネットワークをGLM予測器として形式化し、ターゲットドメインに適した表現を識別する。
論文 参考訳(メタデータ) (2020-10-15T17:45:18Z) - Toward Reliable Models for Authenticating Multimedia Content: Detecting
Resampling Artifacts With Bayesian Neural Networks [9.857478771881741]
信頼性を重視した法医学的アルゴリズムの再設計に向けた第一歩を踏み出します。
本稿では,ディープニューラルネットワークのパワーとベイズフレームワークの厳密な確率的定式化を組み合わせたベイズニューラルネットワーク(BNN)を提案する。
BNNは、最先端の検出性能と、配布外サンプルを検出する優れた能力を得る。
論文 参考訳(メタデータ) (2020-07-28T11:23:40Z) - GraN: An Efficient Gradient-Norm Based Detector for Adversarial and
Misclassified Examples [77.99182201815763]
ディープニューラルネットワーク(DNN)は、敵対的な例やその他のデータ摂動に対して脆弱である。
GraNは、どのDNNにも容易に適応できる時間およびパラメータ効率の手法である。
GraNは多くの問題セットで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-04-20T10:09:27Z) - Beyond Dropout: Feature Map Distortion to Regularize Deep Neural
Networks [107.77595511218429]
本稿では,ディープニューラルネットワークの中間層に関連する実験的なRademacher複雑性について検討する。
上記の問題に対処するための特徴歪み法(Disout)を提案する。
より高い試験性能を有するディープニューラルネットワークを作製するための特徴写像歪みの優位性を解析し、実証した。
論文 参考訳(メタデータ) (2020-02-23T13:59:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。