Processing quantum signals carried by electrical currents
- URL: http://arxiv.org/abs/2008.01580v1
- Date: Tue, 4 Aug 2020 14:24:06 GMT
- Title: Processing quantum signals carried by electrical currents
- Authors: Benjamin Roussel, Cl\'ement Cabart, Gwendal F\`eve and Pascal
Degiovanni
- Abstract summary: We propose a general signal processing algorithm to extract the elementary single-particle states, called electronic atoms of signal, present in any periodic quantum electrical current.
These excitations and their mutual quantum coherence describe the excess single-electron coherence in the same way musical notes and score describe a sound signal emitted by a music instrument.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent developments in the coherent manipulation of electrons in ballistic
conductors include the generation of time-periodic electrical currents
involving one to few electronic excitations per period. However, using
individual electrons as carrier of quantum information for flying qubit
computation or quantum metrology applications calls for a general method to
unravel the single-particle excitations embedded in a quantum electrical
current and how quantum information is encoded within it. Here, we propose a
general signal processing algorithm to extract the elementary single-particle
states, called electronic atoms of signal, present in any periodic quantum
electrical current. These excitations and their mutual quantum coherence
describe the excess single-electron coherence in the same way musical notes and
score describe a sound signal emitted by a music instrument. This method, which
is the first step towards the development of signal processing of quantum
electrical currents is illustrated by assessing the quality of experimentally
relevant single electron sources. The example of randomized quantum electrical
currents obtained by regularly clocked but randomly injected unit charge
Lorentzian voltage pulses enables us to discuss how interplay of the coherence
of the applied voltage and of the Pauli principle alter the quantum coherence
between the emitted single particle excitations.
Related papers
- Quantum nuclear dynamics on a distributed set of ion-trap quantum computing systems [0.0]
We use an IonQ 11-qubit trapped-ion quantum computer, Harmony, to study the quantum wavepacket dynamics of a shared-proton.
We also provide the first application of distributed quantum computing for chemical dynamics problems.
arXiv Detail & Related papers (2024-06-07T18:27:50Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Electronic quantum trajectories with quantum nuclei [0.0]
We generalize the theory of electronic quantum trajectories to a fully quantum-mechanical treatment of the nuclei.
We show that the nuclei can be viewed as a quantum clock for the electronic motion and we develop a fully quantum-mechanical clock-dependent version of quantum hydrodynamics.
arXiv Detail & Related papers (2021-09-28T11:48:10Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Quantum susceptibilities in time-domain sampling of electric field
fluctuations [0.0]
We develop a microscopic quantum theory of the electro-optic process using an ensemble of non-interacting three-level systems.
We show that the quantum contributions can be substantial and might even dominate the total response.
In a complementary regime, electro-optic sampling can serve as a spectroscopic tool to study the pure quantum susceptibilities of materials.
arXiv Detail & Related papers (2021-03-13T13:22:34Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum Algorithm for Simulating Single-Molecule Electron Transport [0.0]
We introduce a quantum algorithm to efficiently calculate the electronic current through single-molecule junctions.
We show that a quantum computer programmed to simulate vibronic transitions between different charge states of a molecule can be used to compute sequential electron transfer rates and electric current.
arXiv Detail & Related papers (2020-12-16T19:53:14Z) - Coherent electron displacement for quantum information processing using
attosecond single cycle pulses [0.0]
We demonstrate a new route to drive the electron displacement on a timescale faster than that of the dynamical distortion of electron wavepacket.
We map out the associated phase information and retrieve it over long distances from the origin.
Our findings establish a promising route for advanced control of quantum states using attosecond single-cycle pulses.
arXiv Detail & Related papers (2020-12-01T14:50:57Z) - Circuit Quantum Electrodynamics [62.997667081978825]
Quantum mechanical effects at the macroscopic level were first explored in Josephson junction-based superconducting circuits in the 1980s.
In the last twenty years, the emergence of quantum information science has intensified research toward using these circuits as qubits in quantum information processors.
The field of circuit quantum electrodynamics (QED) has now become an independent and thriving field of research in its own right.
arXiv Detail & Related papers (2020-05-26T12:47:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.