論文の概要: Robust phase estimation of Gaussian states in the presence of outlier
quantum states
- arxiv url: http://arxiv.org/abs/2008.01933v1
- Date: Wed, 5 Aug 2020 04:57:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-07 02:22:35.070689
- Title: Robust phase estimation of Gaussian states in the presence of outlier
quantum states
- Title(参考訳): 外乱量子状態の存在下でのガウス状態のロバスト位相推定
- Authors: Yukito Mototake and Jun Suzuki
- Abstract要約: まず、外れ値の量子状態を扱うために、量子システムにおけるロバスト統計の統計的枠組みを示す。
次に、不確実な量子状態による不信頼な測定結果を抑制するために、M推定器の手法を適用する。
- 参考スコア(独自算出の注目度): 21.22196305592545
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we investigate the problem of estimating the phase of a
coherent state in the presence of unavoidable noisy quantum states. These
unwarranted quantum states are represented by outlier quantum states in this
study. We first present a statistical framework of robust statistics in a
quantum system to handle outlier quantum states. We then apply the method of
M-estimators to suppress untrusted measurement outcomes due to outlier quantum
states. Our proposal has the advantage over the classical methods in being
systematic, easy to implement, and robust against occurrence of noisy states.
- Abstract(参考訳): 本稿では,避けられない雑音量子状態の存在下でのコヒーレント状態の位相を推定する問題について検討する。
これらの不和量子状態は、この研究において外れた量子状態によって表される。
まず,外れた量子状態を扱う量子システムにおけるロバスト統計の統計的枠組みを提案する。
次に、不信頼な量子状態による測定結果を抑制するために、M推定器の手法を適用する。
提案手法は, 従来の手法よりも, 系統的, 実装が容易で, 雑音の発生に対して頑健である。
関連論文リスト
- Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
非効率なモニタリングの下で、1d量子ランダムウォークにおける粒子の絡み合いを定量化する。
測定によって引き起こされる量子-古典的交叉における系の最大平均絡み合いは、測定強度と非効率性によって異なる方法であることがわかった。
論文 参考訳(メタデータ) (2024-02-29T18:10:05Z) - Measurement-Device-Independent Detection of Beyond-Quantum State [53.64687146666141]
量子外状態検出のための測定デバイス非依存(MDI)テストを提案する。
本稿では,入力集合のトモグラフィ完全性の重要性について論じる。
論文 参考訳(メタデータ) (2023-12-11T06:40:13Z) - Protecting quantum correlations of negative quantum states using weak
measurement under non-Markovian noise [0.0]
量子状態の崩壊を保護するためには、弱測定(WM)と量子測度反転(QMR)が重要である。
離散ウィグナー関数を用いて開発された2ビット負量子状態の量子相関、最大忠実度、忠実度偏差について検討する。
いくつかの負の量子状態は、ノイズのある量子チャネルを介して進化中の異なるケースに対してベル状態よりもWMとQMRでより良く機能する。
論文 参考訳(メタデータ) (2023-09-12T11:19:20Z) - Certifying activation of quantum correlations with finite data [0.0]
量子論は、絡み合い、ステアビリティ、ベル非局所性など、異なる種類の相関を許容する。
本稿では,局所フィルタリングによる量子相関の活性化,特にベル非局所性と量子ステアビリティについて解析する方法について述べる。
論文 参考訳(メタデータ) (2023-05-05T18:00:00Z) - Quantum Thermal State Preparation [39.91303506884272]
量子マスター方程式をシミュレートするための簡単な連続時間量子ギブスサンプリングを導入する。
我々は、特定の純ギブス状態を作成するための証明可能かつ効率的なアルゴリズムを構築した。
アルゴリズムのコストは温度、精度、混合時間に依存している。
論文 参考訳(メタデータ) (2023-03-31T17:29:56Z) - The power of noisy quantum states and the advantage of resource dilution [62.997667081978825]
絡み合った蒸留により、ノイズの多い量子状態が一重項に変換される。
エンタングルメント希釈は局所雑音に対する共有量子状態のレジリエンスを高めることができることを示す。
論文 参考訳(メタデータ) (2022-10-25T17:39:29Z) - Experimental demonstration of robustness of Gaussian quantum coherence [5.522952775766461]
本研究では, 圧縮状態とガウスのアインシュタイン-ポドルスキー-ローゼン絡み合った状態の量子コヒーレンスを熱ノイズチャネルで実験的に定量化する。
この結果から,ガウス量子コヒーレンスを損失・雑音環境に適用する方法について検討した。
論文 参考訳(メタデータ) (2021-05-24T14:16:03Z) - Emulation of quantum measurements with mixtures of coherent states [0.0]
非古典的量子状態から生じる量子現象をエミュレートする手法を提案する。
これにより、よく知られた量子効果を実験室でより容易に生成できる資源で再現することができる。
論文 参考訳(メタデータ) (2021-04-30T14:00:24Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
時間に依存しないハミルトン力学の下で自然にランダム状態アンサンブルの出現を予測し、実験的に観察する方法を示す。
観測されたランダムアンサンブルは射影測定から現れ、より大きな量子系のサブシステムの間に構築された普遍的相関に密接に関連している。
我々の研究は、量子力学におけるランダム性を理解するための意味を持ち、より広い文脈でのこの概念の適用を可能にする。
論文 参考訳(メタデータ) (2021-03-05T08:32:43Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
本稿では,現実的な雑音に依拠する新しい量子通信方式を提案する。
性能分析の結果,提案手法は競争力のあるQBER, 利得, 利得を提供することがわかった。
論文 参考訳(メタデータ) (2020-12-22T13:06:12Z) - Single-copies estimation of entanglement negativity [1.7179583883220435]
絡み合いは量子情報処理において中心的な役割を果たす。
本稿では,複合系の任意の二分割の絡み合い係数を推定する手法を提案する。
論文 参考訳(メタデータ) (2020-04-23T17:57:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。