論文の概要: Optimal Variance Control of the Score Function Gradient Estimator for
Importance Weighted Bounds
- arxiv url: http://arxiv.org/abs/2008.01998v2
- Date: Tue, 8 Dec 2020 21:09:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-02 17:37:25.386486
- Title: Optimal Variance Control of the Score Function Gradient Estimator for
Importance Weighted Bounds
- Title(参考訳): 重要重み付き境界に対するスコア関数勾配推定器の最適分散制御
- Authors: Valentin Li\'evin, Andrea Dittadi, Anders Christensen, Ole Winther
- Abstract要約: 本稿では,重要重み付き変動境界(IWAE)のスコア関数勾配推定器の新しい結果を紹介する。
我々は、大きな$K$の極限において、推定子のSignal-to-Noise比(SNR)が$sqrtK$として大きくなるように制御変数を選択することができることを証明した。
- 参考スコア(独自算出の注目度): 12.75471887147565
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces novel results for the score function gradient estimator
of the importance weighted variational bound (IWAE). We prove that in the limit
of large $K$ (number of importance samples) one can choose the control variate
such that the Signal-to-Noise ratio (SNR) of the estimator grows as $\sqrt{K}$.
This is in contrast to the standard pathwise gradient estimator where the SNR
decreases as $1/\sqrt{K}$. Based on our theoretical findings we develop a novel
control variate that extends on VIMCO. Empirically, for the training of both
continuous and discrete generative models, the proposed method yields superior
variance reduction, resulting in an SNR for IWAE that increases with $K$
without relying on the reparameterization trick. The novel estimator is
competitive with state-of-the-art reparameterization-free gradient estimators
such as Reweighted Wake-Sleep (RWS) and the thermodynamic variational objective
(TVO) when training generative models.
- Abstract(参考訳): 本稿では,重要重み付き変動境界(IWAE)のスコア関数勾配推定器の新しい結果を紹介する。
我々は、大きな$k$(重要サンプル数)の限界において、推定子のsnr(signal-to-noise ratio)が$\sqrt{k}$となるように制御変数を選択することができることを証明する。
これは、SNRが1/\sqrt{K}$に減少する標準的な経路勾配推定器とは対照的である。
理論的な知見に基づいて,VIMCO上に広がる新規な制御変数を開発した。
実験により,連続生成モデルと離散生成モデルの両方のトレーニングにおいて,提案手法は優れた分散低減を実現し,再パラメータ化のトリックに頼ることなく,IWAEのSNRを$Kで増加させる。
この新しい推定器は、生成モデルのトレーニングにおいてreweighted wake-sleep (rws) や thermodynamic variational objective (tvo) のような最先端のパラメータフリーな勾配推定器と競合する。
関連論文リスト
- Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
我々は、パラメトリックな$sqrt n $-rateで収束する、最も近い隣人の新しい修正とマッチング推定器を開発する。
我々は,非パラメトリック関数推定器は含まないこと,特に標本サイズ依存パラメータの平滑化には依存していないことを強調する。
論文 参考訳(メタデータ) (2024-07-11T13:28:34Z) - Rényi Neural Processes [14.11793373584558]
本稿では,事前の誤特定の影響を改善するためにR'enyi Neural Processs (RNP)を提案する。
密度比 $fracpq$ は (1-$alpha$) の差分勾配で後方に関してスケールする。
実験の結果,最先端のNPファミリーモデルよりも一貫したログライクな改善が見られた。
論文 参考訳(メタデータ) (2024-05-25T00:14:55Z) - Risk-averse Learning with Non-Stationary Distributions [18.15046585146849]
本稿では,ランダムなコスト分布が時間とともに変化するリスク-逆オンライン最適化について検討する。
リスクの条件値(CVaR)をリスク尺度として用いたリスク逆目的関数を最小化する。
設計した学習アルゴリズムは,凸関数と凸関数の両方に対して高い確率で線形動的後悔を実現する。
論文 参考訳(メタデータ) (2024-04-03T18:16:47Z) - Model-Based Reparameterization Policy Gradient Methods: Theory and
Practical Algorithms [88.74308282658133]
Reization (RP) Policy Gradient Methods (PGM) は、ロボット工学やコンピュータグラフィックスにおける連続的な制御タスクに広く採用されている。
近年の研究では、長期強化学習問題に適用した場合、モデルベースRP PGMはカオス的かつ非滑らかな最適化環境を経験する可能性があることが示されている。
本稿では,長期モデルアンロールによる爆発的分散問題を緩和するスペクトル正規化法を提案する。
論文 参考訳(メタデータ) (2023-10-30T18:43:21Z) - U-Statistics for Importance-Weighted Variational Inference [29.750633016889655]
重要重み付き変分推論における推定のばらつきを低減するために,U-statisticsを用いた手法を提案する。
実験により,U-Statistic variance reduction(U-Statistic variance)の低減は,モデルの範囲での推論性能の大幅な改善につながることが確認された。
論文 参考訳(メタデータ) (2023-02-27T16:08:43Z) - Estimation of Non-Crossing Quantile Regression Process with Deep ReQU
Neural Networks [5.5272015676880795]
本稿では,2次単位(ReQU)活性化深層ニューラルネットワークを用いた非分離モデルにおいて,QRP(quantile regression process)を推定するペナル化非パラメトリック手法を提案する。
推定されたQRPに対する非漸近的過剰リスク境界を確立し、軽度な滑らかさと規則性条件下で推定されたQRPに対する平均2乗誤差を導出する。
論文 参考訳(メタデータ) (2022-07-21T12:26:45Z) - Deep Equilibrium Optical Flow Estimation [80.80992684796566]
最近のSOTA(State-of-the-art)光フローモデルでは、従来のアルゴリズムをエミュレートするために有限ステップの更新操作を使用する。
これらのRNNは大きな計算とメモリオーバーヘッドを課し、そのような安定した推定をモデル化するために直接訓練されていない。
暗黙的層の無限レベル固定点として直接流れを解く手法として,Deep equilibrium Flow estimatorを提案する。
論文 参考訳(メタデータ) (2022-04-18T17:53:44Z) - On Signal-to-Noise Ratio Issues in Variational Inference for Deep
Gaussian Processes [55.62520135103578]
重み付き変分推論を用いたDGP(Deep Gaussian Processs)の訓練で用いられる勾配推定は,信号-雑音比(SNR)問題の影響を受けやすいことを示す。
DGPモデルの予測性能が一貫した改善につながることを示す。
論文 参考訳(メタデータ) (2020-11-01T14:38:02Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z) - SUMO: Unbiased Estimation of Log Marginal Probability for Latent
Variable Models [80.22609163316459]
無限級数のランダム化トランケーションに基づく潜在変数モデルに対して、ログ境界確率の非バイアス推定器とその勾配を導入する。
推定器を用いてトレーニングしたモデルは、同じ平均計算コストに対して、標準的な重要度サンプリングに基づくアプローチよりも優れたテストセット確率を与えることを示す。
論文 参考訳(メタデータ) (2020-04-01T11:49:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。