Stroke Lesion Segmentation using Multi-Stage Cross-Scale Attention
- URL: http://arxiv.org/abs/2501.15423v1
- Date: Sun, 26 Jan 2025 06:57:31 GMT
- Title: Stroke Lesion Segmentation using Multi-Stage Cross-Scale Attention
- Authors: Liang Shang, William A. Sethares, Anusha Adluru, Andrew L. Alexander, Vivek Prabhakaran, Veena A. Nair, Nagesh Adluru,
- Abstract summary: This work introduces the Multi-Stage Cross-Scale Attention (MSCSA) mechanism to improve the mapping between brain structural features and lesions of varying sizes.
Using the Anatomical Tracings of Lesions After Stroke (ATLAS) v2.0 dataset, MSCSA outperforms all baseline methods in both Dice and F1 scores on a subset focusing on small lesions.
- Score: 1.9973808639817021
- License:
- Abstract: Precise characterization of stroke lesions from MRI data has immense value in prognosticating clinical and cognitive outcomes following a stroke. Manual stroke lesion segmentation is time-consuming and requires the expertise of neurologists and neuroradiologists. Often, lesions are grossly characterized for their location and overall extent using bounding boxes without specific delineation of their boundaries. While such characterization provides some clinical value, to develop a precise mechanistic understanding of the impact of lesions on post-stroke vascular contributions to cognitive impairments and dementia (VCID), the stroke lesions need to be fully segmented with accurate boundaries. This work introduces the Multi-Stage Cross-Scale Attention (MSCSA) mechanism, applied to the U-Net family, to improve the mapping between brain structural features and lesions of varying sizes. Using the Anatomical Tracings of Lesions After Stroke (ATLAS) v2.0 dataset, MSCSA outperforms all baseline methods in both Dice and F1 scores on a subset focusing on small lesions, while maintaining competitive performance across the entire dataset. Notably, the ensemble strategy incorporating MSCSA achieves the highest scores for Dice and F1 on both the full dataset and the small lesion subset. These results demonstrate the effectiveness of MSCSA in segmenting small lesions and highlight its robustness across different training schemes for large stroke lesions. Our code is available at: https://github.com/nadluru/StrokeLesSeg.
Related papers
- SegHeD+: Segmentation of Heterogeneous Data for Multiple Sclerosis Lesions with Anatomical Constraints and Lesion-aware Augmentation [1.6365496769445946]
We introduce SegHeD+, a novel segmentation model that can handle multiple datasets and tasks.
We integrate domain knowledge about MS lesions by incorporating longitudinal, anatomical, and volumetric constraints into the segmentation model.
SegHeD+ is evaluated on five MS datasets and demonstrates superior performance in segmenting all, new, and vanishing lesions.
arXiv Detail & Related papers (2024-12-14T19:44:25Z) - ICH-SCNet: Intracerebral Hemorrhage Segmentation and Prognosis Classification Network Using CLIP-guided SAM mechanism [12.469269425813607]
Intracerebral hemorrhage (ICH) is the most fatal subtype of stroke and is characterized by a high incidence of disability.
Existing approaches address these two tasks independently and predominantly focus on imaging data alone.
This paper introduces a multi-task network, ICH-SCNet, designed for both ICH segmentation and prognosis classification.
arXiv Detail & Related papers (2024-11-07T12:34:25Z) - Preserving Cardiac Integrity: A Topology-Infused Approach to Whole Heart Segmentation [6.495726693226574]
Whole heart segmentation (WHS) supports cardiovascular disease diagnosis, disease monitoring, treatment planning, and prognosis.
This paper introduces a new topology-preserving module that is integrated into deep neural networks.
The implementation achieves anatomically plausible segmentation by using learned topology-preserving fields, which are based entirely on 3D convolution and are therefore very effective for 3D voxel data.
arXiv Detail & Related papers (2024-10-14T14:32:05Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - MS Lesion Segmentation: Revisiting Weighting Mechanisms for Federated
Learning [92.91544082745196]
Federated learning (FL) has been widely employed for medical image analysis.
FL's performance is limited for multiple sclerosis (MS) lesion segmentation tasks.
We propose the first FL MS lesion segmentation framework via two effective re-weighting mechanisms.
arXiv Detail & Related papers (2022-05-03T14:06:03Z) - External Attention Assisted Multi-Phase Splenic Vascular Injury
Segmentation with Limited Data [72.99534552950138]
The spleen is one of the most commonly injured solid organs in blunt abdominal trauma.
accurate segmentation of splenic vascular injury is challenging for the following reasons.
arXiv Detail & Related papers (2022-01-04T02:35:56Z) - Multiple Sclerosis Lesion Activity Segmentation with Attention-Guided
Two-Path CNNs [49.32653090178743]
convolutional neural networks (CNNs) are studied for lesion activity segmentation from two time points.
CNNs are designed and evaluated that combine the information from two points in different ways.
It is demonstrated that deep learning-based methods outperform classic approaches.
arXiv Detail & Related papers (2020-08-05T08:49:20Z) - Weakly-Supervised Lesion Segmentation on CT Scans using Co-Segmentation [18.58056402884405]
Lesion segmentation on computed tomography (CT) scans is an important step for precisely monitoring changes in lesion/tumor growth.
Current practices rely on an imprecise substitute called response evaluation criteria in solid tumors.
This paper proposes a convolutional neural network based weakly-supervised lesion segmentation method.
arXiv Detail & Related papers (2020-01-23T15:15:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.