Quantum thermodynamics of the Caldeira-Leggett model with non-equilibrium Gaussian reservoirs
- URL: http://arxiv.org/abs/2405.00215v2
- Date: Mon, 25 Nov 2024 13:02:15 GMT
- Title: Quantum thermodynamics of the Caldeira-Leggett model with non-equilibrium Gaussian reservoirs
- Authors: Vasco Cavina, Massimiliano Esposito,
- Abstract summary: We introduce a non-equilibrium version of the Caldeira-Leggett model in which a quantum particle is strongly coupled to a set of engineered reservoirs.
Strongly displaced/squeezed reservoirs can be used to generate an effective time dependence in the system Hamiltonian.
We show the quantum-classical correspondence between the heat statistics in the non-equilibrium Caldeira-Leggett model and the statistics of a classical Langevin particle under the action of squeezed and displaced colored noises.
- Score: 0.0
- License:
- Abstract: We introduce a non-equilibrium version of the Caldeira-Leggett model in which a quantum particle is strongly coupled to a set of engineered reservoirs. The reservoirs are composed by collections of squeezed and displaced thermal modes, in contrast to the standard case in which the modes are assumed to be at equilibrium. The model proves to be very versatile. Strongly displaced/squeezed reservoirs can be used to generate an effective time dependence in the system Hamiltonian and can be identified as sources of pure work. In the case of squeezing, the time dependence is stochastic and breaks the fluctuation-dissipation relation, this can be reconciled with the second law of thermodynamics by correctly accounting for the energy used to generate the initial non-equilibrium conditions. To go beyond the average description and compute the full heat statistics, we treat squeezing and displacement as generalized Hamiltonians on a modified Keldysh contour. As an application of this technique, we show the quantum-classical correspondence between the heat statistics in the non-equilibrium Caldeira-Leggett model and the statistics of a classical Langevin particle under the action of squeezed and displaced colored noises. Finally, we discuss thermodynamic symmetries of the heat generating function, proving a fluctuation theorem for the energy balance and showing that the conservation of energy at the trajectory level emerges in the classical limit.
Related papers
- Thermodynamic Roles of Quantum Environments: From Heat Baths to Work Reservoirs [49.1574468325115]
Environments in quantum thermodynamics usually take the role of heat baths.
We show that within the same model, the environment can take three different thermodynamic roles.
The exact role of the environment is determined by the strength and structure of the coupling.
arXiv Detail & Related papers (2024-08-01T15:39:06Z) - Stochastic Thermodynamics at the Quantum-Classical Boundary: A Self-Consistent Framework Based on Adiabatic-Response Theory [0.0]
Microscopic thermal machines promise to play an important role in future quantum technologies.
Making such devices widely applicable will require effective strategies to channel their output into easily accessible storage systems like classical degrees of freedom.
We develop a self-consistent theoretical framework that makes it possible to model such quantum-classical hybrid devices in a thermodynamically consistent manner.
arXiv Detail & Related papers (2024-04-15T20:13:42Z) - Quantum stochastic thermodynamics in the mesoscopic-leads formulation [0.0]
We introduce a numerical method to sample the distributions of charge, heat, and entropy production in open quantum systems.
Our method exploits the mesoscopic-leads formulation, where macroscopic reservoirs are modeled by a finite collection of modes.
arXiv Detail & Related papers (2024-04-09T16:17:48Z) - Does canonical quantization lead to GKSL dynamics? [0.0]
We introduce a generalized classical model of Brownian motion for describing thermal relaxation processes.
We reproduce a Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) equation satisfying the detailed balance condition.
arXiv Detail & Related papers (2023-10-25T23:48:20Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Thermodynamics of adiabatic quantum pumping in quantum dots [50.24983453990065]
We consider adiabatic quantum pumping through a resonant level model, a single-level quantum dot connected to two fermionic leads.
We develop a self-contained thermodynamic description of this model accounting for the variation of the energy level of the dot and the tunnelling rates with the thermal baths.
arXiv Detail & Related papers (2023-06-14T16:29:18Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Quantum-classical correspondence principle for heat distribution in
quantum Brownian motion [5.096938986357835]
We study the heat distribution of a relaxation process in the quantum Brownian motion model.
Our research brings justification for the definition of the quantum fluctuating heat via two-point measurements.
arXiv Detail & Related papers (2021-11-22T15:19:49Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Quantum systems correlated with a finite bath: nonequilibrium dynamics
and thermodynamics [0.0]
We derive a master equation that accounts for system-bath correlations and includes, at a coarse-grained level, a dynamically evolving bath.
Our work paves the way for studying a variety of nanoscale quantum technologies including engines, refrigerators, or heat pumps.
arXiv Detail & Related papers (2020-08-05T15:19:29Z) - Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
temperature and internal entropy production [68.8204255655161]
An explicit expression for the temperature of an open two-level quantum system is obtained.
This temperature coincides with the environment temperature if the system reaches thermal equilibrium with a heat reservoir.
We show that within this theoretical framework the total entropy production can be partitioned into two contributions.
arXiv Detail & Related papers (2020-04-09T23:06:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.