論文の概要: Spacecraft Collision Avoidance Challenge: design and results of a
machine learning competition
- arxiv url: http://arxiv.org/abs/2008.03069v2
- Date: Mon, 12 Oct 2020 12:30:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-02 00:45:48.986463
- Title: Spacecraft Collision Avoidance Challenge: design and results of a
machine learning competition
- Title(参考訳): 宇宙船衝突回避チャレンジ:機械学習競技の設計と成果
- Authors: Thomas Uriot, Dario Izzo, Lu\'is F. Sim{\~o}es, Rasit Abay, Nils
Einecke, Sven Rebhan, Jose Martinez-Heras, Francesca Letizia, Jan Siminski,
Klaus Merz
- Abstract要約: 本稿では,宇宙船衝突回避チャレンジの設計と成果について述べる。
この問題領域に機械学習メソッドを適用する際に学んだ課題と教訓について論じる。
- 参考スコア(独自算出の注目度): 7.278310799048815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spacecraft collision avoidance procedures have become an essential part of
satellite operations. Complex and constantly updated estimates of the collision
risk between orbiting objects inform the various operators who can then plan
risk mitigation measures. Such measures could be aided by the development of
suitable machine learning models predicting, for example, the evolution of the
collision risk in time. In an attempt to study this opportunity, the European
Space Agency released, in October 2019, a large curated dataset containing
information about close approach events, in the form of Conjunction Data
Messages (CDMs), collected from 2015 to 2019. This dataset was used in the
Spacecraft Collision Avoidance Challenge, a machine learning competition where
participants had to build models to predict the final collision risk between
orbiting objects. This paper describes the design and results of the
competition and discusses the challenges and lessons learned when applying
machine learning methods to this problem domain.
- Abstract(参考訳): 宇宙船の衝突回避手順は、衛星運用の重要な部分となっている。
複雑で常に更新される軌道上の物体間の衝突リスクの推定は、リスク軽減対策を計画できる様々なオペレーターに通知する。
このような対策は、例えば時間の衝突リスクの進化を予測する適切な機械学習モデルの開発によって支援される。
この機会を研究するために、欧州宇宙機関(ESA)は、2015年から2019年にかけて収集されたConjunction Data Messages(CDMs)という形で、接近イベントに関する情報を含む大規模なキュレートデータセットを2019年10月にリリースした。
このデータセットは、参加者が軌道上の物体間の衝突リスクを予測するためのモデルを構築しなければならなかった機械学習のコンペであるspaces collision avoidance challengeで使用された。
本稿では,この課題領域に機械学習手法を適用する際に得られた課題と教訓について考察する。
関連論文リスト
- OrCo: Towards Better Generalization via Orthogonality and Contrast for Few-Shot Class-Incremental Learning [57.43911113915546]
FSCIL(Few-Shot Class-Incremental Learning)は、問題空間を限られたデータで拡張するパラダイムを導入する。
FSCILの手法は、データが漸進的に到着するにつれて、破滅的な忘れ込みの課題に直面している。
表現空間における特徴の直交性と対照的な学習という2つの基本原理に基づいて構築されたOrCoフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-27T13:30:48Z) - Predicting the Probability of Collision of a Satellite with Space
Debris: A Bayesian Machine Learning Approach [0.0]
宇宙は、宇宙活動の増大により、ローアース軌道でさらに混雑している。
定期的な運用の一環として衝突回避を検討する必要性は、衛星運用者にとって明らかである。
現在の手順は、人間アナリストによる多重衝突警告の分析に依存している。
論文 参考訳(メタデータ) (2023-11-17T16:41:35Z) - Statistical Learning of Conjunction Data Messages Through a Bayesian
Non-Homogeneous Poisson Process [0.0]
衝突回避と宇宙交通管理の現在のアプローチは多くの課題に直面している。
衛星所有者/オペレーターは、衝突回避操作を行う必要があるかどうかを決定するために、資産の衝突リスクを認識しなければならない。
論文 参考訳(メタデータ) (2023-11-09T15:04:14Z) - COPILOT: Human-Environment Collision Prediction and Localization from
Egocentric Videos [62.34712951567793]
エゴセントリックな観測から人間と環境の衝突を予測する能力は、VR、AR、ウェアラブルアシストロボットなどのアプリケーションにおける衝突回避を可能にするために不可欠である。
本稿では、ボディマウントカメラから撮影した多視点エゴセントリックビデオから、多様な環境における衝突を予測するという課題を紹介する。
衝突予測と局所化を同時に行うために,COPILOTと呼ばれるトランスフォーマーモデルを提案する。
論文 参考訳(メタデータ) (2022-10-04T17:49:23Z) - Predicting Seriousness of Injury in a Traffic Accident: A New Imbalanced
Dataset and Benchmark [62.997667081978825]
本稿では,交通事故における傷害の重大性を予測するために,機械学習アルゴリズムの性能を評価する新しいデータセットを提案する。
データセットは、英国運輸省から公開されているデータセットを集約することで作成される。
論文 参考訳(メタデータ) (2022-05-20T21:15:26Z) - Congestion-aware Multi-agent Trajectory Prediction for Collision
Avoidance [110.63037190641414]
渋滞パターンを明示的に学習し、新しい「センス--学習--Reason--予測」フレームワークを考案する。
学習段階を2段階に分解することで、「学生」は「教師」から文脈的手がかりを学習し、衝突のない軌跡を生成する。
実験では,提案モデルが合成データセットにおいて衝突のない軌道予測を生成できることを実証する。
論文 参考訳(メタデータ) (2021-03-26T02:42:33Z) - A model for traffic incident prediction using emergency braking data [77.34726150561087]
道路交通事故予測におけるデータ不足の根本的な課題を、事故の代わりに緊急ブレーキイベントをトレーニングすることで解決します。
メルセデス・ベンツ車両の緊急ブレーキデータに基づくドイツにおける交通事故予測モデルを実装したプロトタイプを提案する。
論文 参考訳(メタデータ) (2021-02-12T18:17:12Z) - Towards Automated Satellite Conjunction Management with Bayesian Deep
Learning [0.0]
ローアース軌道は、廃棄されたロケット本体、死んだ衛星、および衝突や爆発による何百万もの破片のジャンクヤードです。
速度は28,000km/hで、これらの軌道上の衝突は断片を発生させ、ケスラー症候群として知られるさらなる衝突のカスケードを引き起こす可能性がある。
この問題に対するベイジアン深層学習のアプローチを導入し、時系列の協調データメッセージで動作する繰り返しニューラルネットワークアーキテクチャ(LSTM)を開発します。
論文 参考訳(メタデータ) (2020-12-23T02:16:54Z) - Spacecraft Collision Risk Assessment with Probabilistic Programming [0.0]
長さ10cmを超える34,000体以上が地球を周回していることが知られている。
そのうち、活動的な衛星はわずかの割合しかなく、残りの人口は死んだ衛星、ロケット本体、および運用中の宇宙船に衝突の脅威を与える破片でできています。
結合データメッセージを合成生成するための新しい物理ベースの確率的生成モデルを構築する。
論文 参考訳(メタデータ) (2020-12-18T14:26:08Z) - Object Rearrangement Using Learned Implicit Collision Functions [61.90305371998561]
本研究では,シーン内の6DOFオブジェクトのポーズに対して,シーンとクエリ対象点の雲を受け付け,衝突を予測できる学習的衝突モデルを提案する。
我々は,テーブルトップ再構成タスクにおけるモデル予測経路積分(MPPI)ポリシーの一部として,学習された衝突モデルを活用する。
学習モデルは従来のパイプラインよりも優れており、シミュレーションされた衝突クエリのデータセット上では9.8%の精度で学習精度が向上している。
論文 参考訳(メタデータ) (2020-11-21T05:36:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。