Duality in quantum transport models
- URL: http://arxiv.org/abs/2008.03476v2
- Date: Wed, 30 Dec 2020 09:35:58 GMT
- Title: Duality in quantum transport models
- Authors: Rouven Frassek, Cristian Giardin\`a, Jorge Kurchan
- Abstract summary: We develop the duality approach', that has been extensively studied for classical models of transport.
We show that any dynamic process of this kind with generic baths may be mapped onto one with equilibrium baths.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop the `duality approach', that has been extensively studied for
classical models of transport, for quantum systems in contact with a thermal
`Lindbladian' bath. The method provides (a) a mapping of the original model to
a simpler one, containing only a few particles and (b) shows that any dynamic
process of this kind with generic baths may be mapped onto one with equilibrium
baths. We exemplify this through the study of a particular model: the quantum
symmetric exclusion process introduced in [D. Bernard, T. Jin, Phys. Rev. Lett.
123, 080601 (2019)]. As in the classical case, the whole construction becomes
intelligible by considering the dynamical symmetries of the problem.
Related papers
- Unified space-time description of pulsed twin beams [44.99833362998488]
The model is here derived from the 3D+1 propagation equation of the quantum fields in a nonlinear crystal.
It allows a unified description of disparate experimental observations conducted over the last 20 years.
arXiv Detail & Related papers (2024-10-02T18:05:21Z) - Geometric Neural Diffusion Processes [55.891428654434634]
We extend the framework of diffusion models to incorporate a series of geometric priors in infinite-dimension modelling.
We show that with these conditions, the generative functional model admits the same symmetry.
arXiv Detail & Related papers (2023-07-11T16:51:38Z) - Complex fluid models of mixed quantum-classical dynamics [0.0]
Mixed quantum-classical fluid models have appeared to describe the coupling between liquid solvents and quantum solute molecules.
Here, we present a new complex fluid system that resolves well-known consistency issues.
As a result, the system inherits a Hamiltonian structure and retains energy/momentum balance.
arXiv Detail & Related papers (2023-06-27T17:48:50Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - On some one-dimensional quantum-mechanical models with a delta-potential
interaction [0.0]
We discuss a systematic construction of dimensionless quantum-mechanical equations.
We choose some simple one-dimensional models proposed recently for the study of localized states in inhomogeneous media.
arXiv Detail & Related papers (2023-06-14T18:33:08Z) - Normalizing flows for atomic solids [67.70049117614325]
We present a machine-learning approach, based on normalizing flows, for modelling atomic solids.
We report Helmholtz free energy estimates for cubic and hexagonal ice modelled as monatomic water as well as for a truncated and shifted Lennard-Jones system.
Our results thus demonstrate that normalizing flows can provide high-quality samples and free energy estimates of solids, without the need for multi-staging or for imposing restrictions on the crystal geometry.
arXiv Detail & Related papers (2021-11-16T18:54:49Z) - Emergence of Hilbert Space Fragmentation in Ising Models with a Weak
Transverse Field [0.0]
We show for the first time the breakdown of ergodicity in $d$-dimensional Ising models with a weak transverse field in a prethermal regime.
Our results indicate nontrivial initial-state dependence for non-equilibrium dynamics of the Ising models in a weak transverse field.
arXiv Detail & Related papers (2021-11-10T09:19:43Z) - Geometric phase in a dissipative Jaynes-Cummings model: theoretical
explanation for resonance robustness [68.8204255655161]
We compute the geometric phases acquired in both unitary and dissipative Jaynes-Cummings models.
In the dissipative model, the non-unitary effects arise from the outflow of photons through the cavity walls.
We show the geometric phase is robust, exhibiting a vanishing correction under a non-unitary evolution.
arXiv Detail & Related papers (2021-10-27T15:27:54Z) - Gauge Principle and Gauge Invariance in Two-Level Systems [0.0]
The quantum Rabi model is a widespread description of the coupling between a two-level system and a quantized single mode of an electromagnetic resonator.
Recently, a modified quantum Rabi model able to provide gauge-invariant physical results.
arXiv Detail & Related papers (2020-11-02T17:49:55Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z) - Finite-temperature transport in one-dimensional quantum lattice models [0.0]
We review the current understanding of transport in one-dimensional lattice models.
We elaborate on state-of-the-art theoretical methods, including both analytical and computational approaches.
arXiv Detail & Related papers (2020-03-06T18:00:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.