論文の概要: Human Robot Collaborative Assembly Planning: An Answer Set Programming
Approach
- arxiv url: http://arxiv.org/abs/2008.03496v1
- Date: Sat, 8 Aug 2020 11:31:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-01 12:13:48.867205
- Title: Human Robot Collaborative Assembly Planning: An Answer Set Programming
Approach
- Title(参考訳): ロボット協調組立計画 : 解答セットプログラミングアプローチ
- Authors: Momina Rizwan, Volkan Patoglu, Esra Erdem
- Abstract要約: 本研究では,不確実性を考慮した協調的な組立計画手法を提案する。
実世界の組立ドメインでは、ロボットが人間のチームメイトと協調して家具を組み立てる。
- 参考スコア(独自算出の注目度): 4.329298109272387
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For planning an assembly of a product from a given set of parts, robots
necessitate certain cognitive skills: high-level planning is needed to decide
the order of actuation actions, while geometric reasoning is needed to check
the feasibility of these actions. For collaborative assembly tasks with humans,
robots require further cognitive capabilities, such as commonsense reasoning,
sensing, and communication skills, not only to cope with the uncertainty caused
by incomplete knowledge about the humans' behaviors but also to ensure safer
collaborations. We propose a novel method for collaborative assembly planning
under uncertainty, that utilizes hybrid conditional planning extended with
commonsense reasoning and a rich set of communication actions for collaborative
tasks. Our method is based on answer set programming. We show the applicability
of our approach in a real-world assembly domain, where a bi-manual Baxter robot
collaborates with a human teammate to assemble furniture. This manuscript is
under consideration for acceptance in TPLP.
- Abstract(参考訳): 特定の部品から製品の組み立てを計画するためには、ロボットは特定の認知スキルを必要とする: アクティベーションアクションの順序を決定するには高いレベルの計画が必要であるが、これらのアクションの実現可能性を確認するには幾何学的推論が必要である。
人間との協調的な組み立て作業では、ロボットは、人間の行動に関する不完全な知識によって引き起こされる不確実性に対処するだけでなく、より安全なコラボレーションを確保するために、常識推論、センシング、コミュニケーションスキルなどのさらなる認知能力を必要とする。
本稿では,コモンセンス推論によって拡張されたハイブリッド条件計画と協調作業のためのリッチなコミュニケーション行動を利用する,不確実性を考慮した協調的組立計画手法を提案する。
我々の手法は応答集合プログラミングに基づいている。
ロボットが人間のチームメイトと協力して家具を組み立てる実世界の組立領域において,我々のアプローチの適用性を示す。
この写本はTPLPの受け入れを検討中である。
関連論文リスト
- An Epistemic Human-Aware Task Planner which Anticipates Human Beliefs and Decisions [8.309981857034902]
目的は、制御不能な人間の行動を説明するロボットポリシーを構築することである。
提案手法は,AND-OR探索に基づく新しい計画手法と解法の構築である。
2つの領域における予備的な実験は、1つの新しいものと1つの適応されたもので、フレームワークの有効性を実証している。
論文 参考訳(メタデータ) (2024-09-27T08:27:36Z) - HARMONIC: Cognitive and Control Collaboration in Human-Robotic Teams [0.0]
メタ認知,自然言語コミュニケーション,説明可能性を備えたロボットチームにおいて,ロボットの認知戦略を実証する。
このシステムは、認知と制御機能を柔軟に統合するHARMONICアーキテクチャを使って実現されている。
論文 参考訳(メタデータ) (2024-09-26T16:48:21Z) - COHERENT: Collaboration of Heterogeneous Multi-Robot System with Large Language Models [49.24666980374751]
COHERENTは、異種マルチロボットシステムの協調のための新しいLCMベースのタスク計画フレームワークである。
提案-実行-フィードバック-調整機構は,個々のロボットに対して動作を分解・割り当てするように設計されている。
実験の結果,我々の研究は,成功率と実行効率の面で,従来の手法をはるかに上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2024-09-23T15:53:41Z) - ThinkBot: Embodied Instruction Following with Thought Chain Reasoning [66.09880459084901]
EIF(Embodied Instruction following)は、複雑な環境下でオブジェクトを相互作用させることで、エージェントが人間の指示を完了させる。
我々は,人間の指導における思考連鎖を原因とした思考ボットを提案し,その不足した行動記述を復元する。
私たちのThinkBotは、成功率と実行効率の両面で、最先端のEIFメソッドよりも大きなマージンで優れています。
論文 参考訳(メタデータ) (2023-12-12T08:30:09Z) - Habitat 3.0: A Co-Habitat for Humans, Avatars and Robots [119.55240471433302]
Habitat 3.0は、家庭環境における協調ロボットタスクを研究するためのシミュレーションプラットフォームである。
複雑な変形可能な体と外観と運動の多様性をモデル化する際の課題に対処する。
Human-in-the-loopインフラストラクチャは、マウス/キーボードまたはVRインターフェースを介してシミュレーションされたロボットとの実際のヒューマンインタラクションを可能にする。
論文 参考訳(メタデータ) (2023-10-19T17:29:17Z) - Generalizable Human-Robot Collaborative Assembly Using Imitation
Learning and Force Control [17.270360447188196]
本稿では,実演から学び,ポーズ推定を用いたロボット協調組立システムを提案する。
提案システムでは, ロボット組立シナリオにおいて, 物理的6DoFマニピュレータを用いて実験を行った。
論文 参考訳(メタデータ) (2022-12-02T20:35:55Z) - Coordination with Humans via Strategy Matching [5.072077366588174]
協調作業を行う人間と人間のチームを観察することにより、利用可能なタスク補完戦略を自律的に認識するアルゴリズムを提案する。
隠れマルコフモデルを使って、チームアクションを低次元の表現に変換することで、事前の知識なしに戦略を識別できます。
ロボットポリシーは、未確認のパートナーのタスク戦略に適応するMixture-of-Expertsモデルを構築するための、識別された戦略のそれぞれに基づいて学習される。
論文 参考訳(メタデータ) (2022-10-27T01:00:50Z) - CASPER: Cognitive Architecture for Social Perception and Engagement in
Robots [0.5918643136095765]
本稿では,他のエージェントの追求目標を予測し,最適な協調行動を計算するために,定性的空間推論を用いた記号的認知アーキテクチャであるCASPERを提案する。
我々は、このアーキテクチャをシミュレーションされたキッチン環境でテストし、収集した結果から、ロボットが進行中の目標を認識し、その達成に向けて適切に協力できることが分かる。
論文 参考訳(メタデータ) (2022-09-01T10:15:03Z) - Spatial Computing and Intuitive Interaction: Bringing Mixed Reality and
Robotics Together [68.44697646919515]
本稿では,空間コンピューティングを応用し,新しいロボットのユースケースを実現するためのロボットシステムについて述べる。
空間コンピューティングとエゴセントリックな感覚を複合現実感デバイスに組み合わせることで、人間の行動をキャプチャして理解し、それらを空間的な意味を持つ行動に変換することができる。
論文 参考訳(メタデータ) (2022-02-03T10:04:26Z) - Show Me What You Can Do: Capability Calibration on Reachable Workspace
for Human-Robot Collaboration [83.4081612443128]
本稿では,REMPを用いた短時間キャリブレーションにより,ロボットが到達できると考える非専門家と地道とのギャップを効果的に埋めることができることを示す。
この校正手順は,ユーザ認識の向上だけでなく,人間とロボットのコラボレーションの効率化にも寄与することを示す。
論文 参考訳(メタデータ) (2021-03-06T09:14:30Z) - Joint Mind Modeling for Explanation Generation in Complex Human-Robot
Collaborative Tasks [83.37025218216888]
本稿では,人間とロボットのコラボレーションにおいて,人間のようなコミュニケーションを実現するための新しい説明可能なAI(XAI)フレームワークを提案する。
ロボットは、人間のユーザの階層的なマインドモデルを構築し、コミュニケーションの一形態として自身のマインドの説明を生成する。
その結果,提案手法はロボットの協調動作性能とユーザ認識を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2020-07-24T23:35:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。