Coherent spin qubit transport in silicon
- URL: http://arxiv.org/abs/2008.04020v2
- Date: Thu, 3 Sep 2020 15:45:13 GMT
- Title: Coherent spin qubit transport in silicon
- Authors: J. Yoneda, W. Huang, M. Feng, C. H. Yang, K. W. Chan, T. Tanttu, W.
Gilbert, R. C. C. Leon, F. E. Hudson, K. M. Itoh, A. Morello, S. D. Bartlett,
A. Laucht, A. Saraiva, A. S. Dzurak
- Abstract summary: A fault-tolerant quantum processor may be configured using stationary qubits interacting only with their nearest neighbours, but at the cost of significant overheads in physical qubits per logical qubit.
Here we demonstrate high-fidelity coherent transport of an electron spin qubit between quantum dots in isotopically-enriched silicon.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A fault-tolerant quantum processor may be configured using stationary qubits
interacting only with their nearest neighbours, but at the cost of significant
overheads in physical qubits per logical qubit. Such overheads could be reduced
by coherently transporting qubits across the chip, allowing connectivity beyond
immediate neighbours. Here we demonstrate high-fidelity coherent transport of
an electron spin qubit between quantum dots in isotopically-enriched silicon.
We observe qubit precession in the inter-site tunnelling regime and assess the
impact of qubit transport using Ramsey interferometry and quantum state
tomography techniques. We report a polarization transfer fidelity of 99.97% and
an average coherent transfer fidelity of 99.4%. Our results provide key
elements for high-fidelity, on-chip quantum information distribution, as long
envisaged, reinforcing the scaling prospects of silicon-based spin qubits.
Related papers
- Hole Flying Qubits in Quantum Dot Arrays [1.0446041735532203]
We show that electric field manipulation allows dynamical control of the SOI, enabling simultaneously the implementation of quantum gates during the transfer.
We employ dynamical decoupling schemes to focus and preserve the spin state, leading to higher transfer fidelity.
arXiv Detail & Related papers (2023-12-07T19:00:02Z) - Coherent spin qubit shuttling through germanium quantum dots [0.0]
We show that a spin qubit can be shuttled through multiple quantum dots while preserving its quantum information.
We achieve these results using hole spin qubits in germanium, despite the presence of strong spin-orbit interaction.
arXiv Detail & Related papers (2023-08-04T15:57:25Z) - The SpinBus Architecture: Scaling Spin Qubits with Electron Shuttling [42.60602838972598]
We introduce the SpinBus architecture, which uses electron shuttling to connect qubits and features low operating frequencies and enhanced qubit coherence.
Control using room temperature instruments can plausibly support at least 144 qubits, but much larger numbers are conceivable with cryogenic control circuits.
arXiv Detail & Related papers (2023-06-28T16:24:11Z) - An integrated microwave-to-optics interface for scalable quantum
computing [47.187609203210705]
We present a new design for an integrated transducer based on a superconducting resonator coupled to a silicon photonic cavity.
We experimentally demonstrate its unique performance and potential for simultaneously realizing all of the above conditions.
Our device couples directly to a 50-Ohm transmission line and can easily be scaled to a large number of transducers on a single chip.
arXiv Detail & Related papers (2022-10-27T18:05:01Z) - Jellybean quantum dots in silicon for qubit coupling and on-chip quantum
chemistry [0.6818394664182874]
Small size and excellent integrability of silicon metal-oxide-semiconductor (SiMOS) quantum dot spin qubits make them an attractive system for mass-manufacturable, scaled-up quantum processors.
This paper investigates the charge and spin characteristics of an elongated quantum dot for the prospects of acting as a qubit-qubit coupler.
arXiv Detail & Related papers (2022-08-08T12:24:46Z) - A shuttling-based two-qubit logic gate for linking distant silicon
quantum processors [0.0]
Control of entanglement between qubits at distant quantum processors using a two-qubit gate is an essential function of a scalable, modular implementation of quantum computation.
Here we demonstrate a two-qubit gate between spin qubits via coherent spin shuttling, a key technology for linking distant silicon quantum processors.
arXiv Detail & Related papers (2022-02-03T01:04:48Z) - A quantum processor based on coherent transport of entangled atom arrays [44.62475518267084]
We show a quantum processor with dynamic, nonlocal connectivity, in which entangled qubits are coherently transported in a highly parallel manner.
We use this architecture to realize programmable generation of entangled graph states such as cluster states and a 7-qubit Steane code state.
arXiv Detail & Related papers (2021-12-07T19:00:00Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z) - Floquet-Enhanced Spin Swaps [0.0]
We harness interactions and disorder between qubits to improve a swap operation for spin eigenstates in semiconductor gate-defined quantum-dot spins.
Our results show how interactions and disorder in multi-qubit systems can stabilize non-trivial quantum operations.
arXiv Detail & Related papers (2020-06-19T01:09:21Z) - Conditional quantum operation of two exchange-coupled single-donor spin
qubits in a MOS-compatible silicon device [48.7576911714538]
Silicon nanoelectronic devices can host single-qubit quantum logic operations with fidelity better than 99.9%.
For the spins of an electron bound to a single donor atom, introduced in the silicon by ion implantation, the quantum information can be stored for nearly 1 second.
Here we demonstrate the conditional, coherent control of an electron spin qubit in an exchange-coupled pair of $31$P donors implanted in silicon.
arXiv Detail & Related papers (2020-06-08T11:25:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.