論文の概要: Learning Bloch Simulations for MR Fingerprinting by Invertible Neural
Networks
- arxiv url: http://arxiv.org/abs/2008.04139v2
- Date: Wed, 10 Mar 2021 12:32:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-31 23:21:11.411858
- Title: Learning Bloch Simulations for MR Fingerprinting by Invertible Neural
Networks
- Title(参考訳): インバータブルニューラルネットワークによるmrフィンガープリントの学習ブロックシミュレーション
- Authors: Fabian Balsiger, Alain Jungo, Olivier Scheidegger, Benjamin Marty,
Mauricio Reyes
- Abstract要約: Intrepid Neural Network (INNs) は、MSF再構成のための現在の後方ベースNNの代替となる可能性がある。
INNは、現在のMRF再構築のための後方ベースNNの代替となるかもしれない。
- 参考スコア(独自算出の注目度): 0.8399688944263843
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magnetic resonance fingerprinting (MRF) enables fast and multiparametric MR
imaging. Despite fast acquisition, the state-of-the-art reconstruction of MRF
based on dictionary matching is slow and lacks scalability. To overcome these
limitations, neural network (NN) approaches estimating MR parameters from
fingerprints have been proposed recently. Here, we revisit NN-based MRF
reconstruction to jointly learn the forward process from MR parameters to
fingerprints and the backward process from fingerprints to MR parameters by
leveraging invertible neural networks (INNs). As a proof-of-concept, we perform
various experiments showing the benefit of learning the forward process, i.e.,
the Bloch simulations, for improved MR parameter estimation. The benefit
especially accentuates when MR parameter estimation is difficult due to MR
physical restrictions. Therefore, INNs might be a feasible alternative to the
current solely backward-based NNs for MRF reconstruction.
- Abstract(参考訳): MRF(MR resonance fingerprinting)は、高速かつマルチパラメトリックなMRイメージングを可能にする。
高速な取得にもかかわらず、辞書マッチングに基づくMDFの最先端の再構築は遅く、スケーラビリティに欠ける。
これらの制限を克服するため、ニューラルネットワーク(NN)は近年、指紋からMRパラメータを推定する手法が提案されている。
そこで我々は,NNベースのMRF再構成を見直し,MRパラメータから指紋への前方処理と,指紋からMRパラメータへの後方処理を,可逆ニューラルネットワーク(INN)を活用して共同で学習する。
概念実証として,より優れたMRパラメータ推定のための前方過程,すなわちBlochシミュレーションの利点を示す様々な実験を行った。
この利点はMRパラメータ推定が困難である場合に特に強調される。
したがって、IMN は現在の MRF 再構築のための後方ベースNN の代替となる可能性がある。
関連論文リスト
- MARVEL: MR Fingerprinting with Additional micRoVascular Estimates using bidirectional LSTMs [0.8901227918730564]
本稿では,現実的な微小血管ネットワークを含む数値ボクセルからのMR信号をシミュレーションする効率的な方法を提案する。
3人のボランティアに対して行った結果から,我々のアプローチはより高速に微小血管パラメータの定量的マップを作成できることが示唆された。
論文 参考訳(メタデータ) (2024-07-15T08:09:54Z) - Understanding the Convergence in Balanced Resonate-and-Fire Neurons [1.4186974630564675]
Resonate-and-Fire(RF)ニューロンは、スパイキングニューラルネットワーク(SNN)におけるインテグレーターニューロンの興味深い補体モデルである
最近提案されたリゾネート・アンド・ファイア(BRF)ニューロンは、タスク性能、スパイク、パラメータ効率において重要な方法論的進歩を示した。
本稿は、これらの収束優位性の出現の経緯と理由について、さらなる直感を提供することを目的としている。
論文 参考訳(メタデータ) (2024-06-01T10:04:55Z) - Joint MR sequence optimization beats pure neural network approaches for
spin-echo MRI super-resolution [44.52688267348063]
最近のMRIスーパーレゾリューション(SR)法は、ニューラルネットワーク(NN)の入力として典型的な臨床領域から取得したコントラストのみを使用する
SR-TSEのためのMRシークエンスとニューラルネットワークパラメータのエンドツーエンド最適化を実現するための既知の演算子学習手法を提案する。
論文 参考訳(メタデータ) (2023-05-12T14:40:25Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
本稿では,畳み込み長短期記憶(Conv-LSTM)に基づくリカレントニューラルネットワーク(Recurrent Neural Network, RNN)を提案する。
提案アルゴリズムは,DBSのリアルタイムi-MRIを実現する可能性があり,汎用的なMR誘導介入に使用できる。
論文 参考訳(メタデータ) (2022-03-28T14:03:45Z) - Towards performant and reliable undersampled MR reconstruction via
diffusion model sampling [67.73698021297022]
DiffuseReconは拡散モデルに基づく新しいMR再構成法である。
観測された信号に基づいて生成過程を導出する。
特定の加速因子に関する追加の訓練は必要としない。
論文 参考訳(メタデータ) (2022-03-08T02:25:38Z) - Low-bit Quantization of Recurrent Neural Network Language Models Using
Alternating Direction Methods of Multipliers [67.688697838109]
本稿では、乗算器の交互方向法(ADMM)を用いて、スクラッチから量子化RNNLMを訓練する新しい手法を提案する。
2つのタスクの実験から、提案されたADMM量子化は、完全な精度ベースライン RNNLM で最大31倍のモデルサイズ圧縮係数を達成したことが示唆された。
論文 参考訳(メタデータ) (2021-11-29T09:30:06Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
スパイキングニューラルネットワーク(英: Spiking Neural Network、SNN)は、ニューロモルフィックハードウェア上でエネルギー効率の高い実装を可能にする脳にインスパイアされたモデルである。
既存のほとんどの手法は、人工ニューラルネットワークのバックプロパゲーションフレームワークとフィードフォワードアーキテクチャを模倣している。
本稿では,フォワード計算の正逆性に依存しない新しいトレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-09-29T07:46:54Z) - Learned Proximal Networks for Quantitative Susceptibility Mapping [9.061630971752464]
本稿では,QSM双極子反転問題の解法として,Learned Proximal Convolutional Neural Network (LP-CNN)を提案する。
このフレームワークは、任意の位相入力測定を自然に処理できる最初のディープラーニングQSMアプローチであると考えられている。
論文 参考訳(メタデータ) (2020-08-11T22:35:24Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Compressive MR Fingerprinting reconstruction with Neural Proximal
Gradient iterations [27.259916894535404]
ProxNetは学習した近位勾配降下フレームワークで、前方取得とBloch動的モデルを反復学習機構に組み込む。
我々の数値実験により、ProxNetはより優れた定量的推測精度、はるかに少ないストレージ要求、そして最近のディープラーニングMRFベースラインに匹敵するランタイムを実現することができることが示された。
論文 参考訳(メタデータ) (2020-06-27T03:52:22Z) - Modal Regression based Structured Low-rank Matrix Recovery for
Multi-view Learning [70.57193072829288]
近年、低ランクなマルチビューサブスペース学習は、クロスビューの分類において大きな可能性を示している。
既存のLMvSLベースの手法では、ビューの区別と差別を同時に扱うことができない。
本稿では,視差を効果的に除去し,識別性を向上する独自の方法であるStructured Low-rank Matrix Recovery (SLMR)を提案する。
論文 参考訳(メタデータ) (2020-03-22T03:57:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。