A Two-Stage Metaheuristic Algorithm for the Dynamic Vehicle Routing
Problem in Industry 4.0 approach
- URL: http://arxiv.org/abs/2008.04355v3
- Date: Wed, 26 Aug 2020 10:14:56 GMT
- Title: A Two-Stage Metaheuristic Algorithm for the Dynamic Vehicle Routing
Problem in Industry 4.0 approach
- Authors: Maryam Abdirad, Krishna Krishnan, Deepak Gupta
- Abstract summary: This research is to minimize transportation cost without exceeding the capacity constraint of each vehicle.
New orders arrive at a specific time into the system while the vehicles are executing the delivery of existing orders.
This paper presents a two-stage hybrid algorithm for solving the DVRP.
- Score: 3.6317403990273402
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Industry 4.0 is a concept that assists companies in developing a modern
supply chain (MSC) system when they are faced with a dynamic process. Because
Industry 4.0 focuses on mobility and real-time integration, it is a good
framework for a dynamic vehicle routing problem (DVRP). This research works on
DVRP. The aim of this research is to minimize transportation cost without
exceeding the capacity constraint of each vehicle while serving customer
demands from a common depot. Meanwhile, new orders arrive at a specific time
into the system while the vehicles are executing the delivery of existing
orders. This paper presents a two-stage hybrid algorithm for solving the DVRP.
In the first stage, construction algorithms are applied to develop the initial
route. In the second stage, improvement algorithms are applied. Experimental
results were designed for different sizes of problems. Analysis results show
the effectiveness of the proposed algorithm.
Related papers
- Robotic warehousing operations: a learn-then-optimize approach to large-scale neighborhood search [84.39855372157616]
This paper supports robotic parts-to-picker operations in warehousing by optimizing order-workstation assignments, item-pod assignments and the schedule of order fulfillment at workstations.
We solve it via large-scale neighborhood search, with a novel learn-then-optimize approach to subproblem generation.
In collaboration with Amazon Robotics, we show that our model and algorithm generate much stronger solutions for practical problems than state-of-the-art approaches.
arXiv Detail & Related papers (2024-08-29T20:22:22Z) - A Meta-Engine Framework for Interleaved Task and Motion Planning using Topological Refinements [51.54559117314768]
Task And Motion Planning (TAMP) is the problem of finding a solution to an automated planning problem.
We propose a general and open-source framework for modeling and benchmarking TAMP problems.
We introduce an innovative meta-technique to solve TAMP problems involving moving agents and multiple task-state-dependent obstacles.
arXiv Detail & Related papers (2024-08-11T14:57:57Z) - A Neural Column Generation Approach to the Vehicle Routing Problem with Two-Dimensional Loading and Last-In-First-Out Constraints [3.9594431485015096]
A vehicle routing problem with two-dimensional loading constraints (2L-CVRP) presents significant practical and algorithmic challenges.
This article presents an exact algorithm that integrates advanced machine learning techniques, specifically a novel combination of attention and recurrence mechanisms.
The proposed algorithm successfully resolves an open instance in the standard test-bed, demonstrating significant improvements brought about by the incorporation of machine learning models.
arXiv Detail & Related papers (2024-06-18T09:58:29Z) - Hybrid Genetic Search for Dynamic Vehicle Routing with Time Windows [0.0]
We adapt the Hybrid Genetic Search (HGS) algorithm, a successful solution for VRPTW, to the dynamic variant.
Our approach modifies these components for DVRPTW, attempting to balance solution quality and constraints on future customer arrivals.
arXiv Detail & Related papers (2023-07-21T11:16:49Z) - Roulette-Wheel Selection-Based PSO Algorithm for Solving the Vehicle
Routing Problem with Time Windows [58.891409372784516]
This paper presents a novel form of the PSO methodology that uses the Roulette Wheel Method (RWPSO)
Experiments using the Solomon VRPTW benchmark datasets on the RWPSO demonstrate that RWPSO is competitive with other state-of-the-art algorithms from the literature.
arXiv Detail & Related papers (2023-06-04T09:18:02Z) - Combinatorial Optimization enriched Machine Learning to solve the
Dynamic Vehicle Routing Problem with Time Windows [5.4807970361321585]
We propose a novel machine learning pipeline that incorporates an optimization layer.
We apply this pipeline to a dynamic vehicle routing problem with waves, which was recently promoted in the EURO Meets NeurIPS Competition at NeurIPS 2022.
Our methodology ranked first in this competition, outperforming all other approaches in solving the proposed dynamic vehicle routing problem.
arXiv Detail & Related papers (2023-04-03T08:23:09Z) - An Overview and Experimental Study of Learning-based Optimization
Algorithms for Vehicle Routing Problem [49.04543375851723]
Vehicle routing problem (VRP) is a typical discrete optimization problem.
Many studies consider learning-based optimization algorithms to solve VRP.
This paper reviews recent advances in this field and divides relevant approaches into end-to-end approaches and step-by-step approaches.
arXiv Detail & Related papers (2021-07-15T02:13:03Z) - Value Function is All You Need: A Unified Learning Framework for Ride
Hailing Platforms [57.21078336887961]
Large ride-hailing platforms, such as DiDi, Uber and Lyft, connect tens of thousands of vehicles in a city to millions of ride demands throughout the day.
We propose a unified value-based dynamic learning framework (V1D3) for tackling both tasks.
arXiv Detail & Related papers (2021-05-18T19:22:24Z) - Constraint Programming Algorithms for Route Planning Exploiting
Geometrical Information [91.3755431537592]
We present an overview of our current research activities concerning the development of new algorithms for route planning problems.
The research so far has focused in particular on the Euclidean Traveling Salesperson Problem (Euclidean TSP)
The aim is to exploit the results obtained also to other problems of the same category, such as the Euclidean Vehicle Problem (Euclidean VRP), in the future.
arXiv Detail & Related papers (2020-09-22T00:51:45Z) - A Three-Stage Algorithm for the Large Scale Dynamic Vehicle Routing
Problem with an Industry 4.0 Approach [3.6317403990273402]
Industry 4.0 is a concept which concentrates on mobility and real-time integration.
The aim of this research is to solve large-scale DVRP (LSDVRP)
arXiv Detail & Related papers (2020-08-26T10:39:36Z) - An adaptive data-driven approach to solve real-world vehicle routing
problems in logistics [0.0]
Transportation occupies one-third of the amount in the logistics costs.
This work presents an adaptive data-driven innovative modular approach for solving the real-world Routing Vehicle Problems (VRP) in the field of logistics.
arXiv Detail & Related papers (2020-01-05T17:47:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.