Towards Software-Defined Data Protection: GDPR Compliance at the Storage
Layer is Within Reach
- URL: http://arxiv.org/abs/2008.04936v1
- Date: Tue, 11 Aug 2020 18:06:46 GMT
- Title: Towards Software-Defined Data Protection: GDPR Compliance at the Storage
Layer is Within Reach
- Authors: Zsolt Istvan (IMDEA Software Institute, Madrid), Soujanya Ponnapalli
(University of Texas, Austin) and Vijay Chidambaram (University of Texas,
Austin and VMWare)
- Abstract summary: "Software-Defined Data Protection" (SDP) is an adoption of the "Software-Defined Storage" approach to non-performance aspects.
SDP translates a trusted controller company and application-specific policies to a set of rules deployed on the storage nodes.
These, in turn, apply the rules at line-rate but do not take any decisions on their own.
- Score: 0.07388859384645262
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Enforcing data protection and privacy rules within large data processing
applications is becoming increasingly important, especially in the light of
GDPR and similar regulatory frameworks. Most modern data processing happens on
top of a distributed storage layer, and securing this layer against accidental
or malicious misuse is crucial to ensuring global privacy guarantees. However,
the performance overhead and the additional complexity for this is often
assumed to be significant -- in this work we describe a path forward that
tackles both challenges. We propose "Software-Defined Data Protection" (SDP),
an adoption of the "Software-Defined Storage" approach to non-performance
aspects: a trusted controller translates company and application-specific
policies to a set of rules deployed on the storage nodes. These, in turn, apply
the rules at line-rate but do not take any decisions on their own. Such an
approach decouples often changing policies from request-level enforcement and
allows storage nodes to implement the latter more efficiently.
Even though in-storage processing brings challenges, mainly because it can
jeopardize line-rate processing, we argue that today's Smart Storage solutions
can already implement the required functionality, thanks to the separation of
concerns introduced by SDP. We highlight the challenges that remain, especially
that of trusting the storage nodes. These need to be tackled before we can
reach widespread adoption in cloud environments.
Related papers
- Enhancing Feature-Specific Data Protection via Bayesian Coordinate Differential Privacy [55.357715095623554]
Local Differential Privacy (LDP) offers strong privacy guarantees without requiring users to trust external parties.
We propose a Bayesian framework, Bayesian Coordinate Differential Privacy (BCDP), that enables feature-specific privacy quantification.
arXiv Detail & Related papers (2024-10-24T03:39:55Z) - ZK-DPPS: A Zero-Knowledge Decentralised Data Sharing and Processing Middleware [3.2995127573095484]
We propose ZK-DPPS, a framework that ensures zero-knowledge communications without the need for traditional ZKPs.
Privacy is preserved through a combination of Fully Homomorphic Encryption (FHE) for computations and Secure Multi-Party Computations (SMPC) for key reconstruction.
We demonstrate the efficacy of ZK-DPPS through a simulated supply chain scenario.
arXiv Detail & Related papers (2024-10-21T01:23:37Z) - FRAG: Toward Federated Vector Database Management for Collaborative and Secure Retrieval-Augmented Generation [1.3824176915623292]
This paper introduces textitFederated Retrieval-Augmented Generation (FRAG), a novel database management paradigm tailored for the growing needs of retrieval-augmented generation (RAG) systems.
FRAG enables mutually-distrusted parties to collaboratively perform Approximate $k$-Nearest Neighbor (ANN) searches on encrypted query vectors and encrypted data stored in distributed vector databases.
arXiv Detail & Related papers (2024-10-17T06:57:29Z) - CURE: Privacy-Preserving Split Learning Done Right [1.388112207221632]
Homomorphic encryption (HE)-based solutions exist for this scenario but often impose prohibitive computational burdens.
CURE is a novel system that encrypts only the server side of the model and the data.
We demonstrate CURE can achieve similar accuracy to plaintext SL while being 16x more efficient in terms of the runtime.
arXiv Detail & Related papers (2024-07-12T04:10:19Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
differential privacy (DP) offers a promising solution by ensuring models are 'almost indistinguishable' with or without any particular privacy unit.
We study user-level DP motivated by applications where it necessary to ensure uniform privacy protection across users.
arXiv Detail & Related papers (2024-06-20T13:54:32Z) - FileDES: A Secure Scalable and Succinct Decentralized Encrypted Storage Network [30.775493810737192]
Decentralized Storage Network (DSN) is an emerging technology that challenges traditional cloud-based storage systems.
We propose FileDES, which incorporates three essential elements: privacy preservation, scalable storage proof, and batch verification.
Our protocol outperforms the others in terms of proof generation/verification efficiency, storage costs, and scalability.
arXiv Detail & Related papers (2024-03-22T06:41:30Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
We consider vertical logistic regression (VLR) trained with mini-batch descent gradient.
We provide a comprehensive and rigorous privacy analysis of VLR in a class of open-source Federated Learning frameworks.
arXiv Detail & Related papers (2022-07-19T05:47:30Z) - Distributed Machine Learning and the Semblance of Trust [66.1227776348216]
Federated Learning (FL) allows the data owner to maintain data governance and perform model training locally without having to share their data.
FL and related techniques are often described as privacy-preserving.
We explain why this term is not appropriate and outline the risks associated with over-reliance on protocols that were not designed with formal definitions of privacy in mind.
arXiv Detail & Related papers (2021-12-21T08:44:05Z) - Distributed Reinforcement Learning for Privacy-Preserving Dynamic Edge
Caching [91.50631418179331]
A privacy-preserving distributed deep policy gradient (P2D3PG) is proposed to maximize the cache hit rates of devices in the MEC networks.
We convert the distributed optimizations into model-free Markov decision process problems and then introduce a privacy-preserving federated learning method for popularity prediction.
arXiv Detail & Related papers (2021-10-20T02:48:27Z) - Second layer data governance for permissioned blockchains: the privacy
management challenge [58.720142291102135]
In pandemic situations, such as the COVID-19 and Ebola outbreak, the action related to sharing health data is crucial to avoid the massive infection and decrease the number of deaths.
In this sense, permissioned blockchain technology emerges to empower users to get their rights providing data ownership, transparency, and security through an immutable, unified, and distributed database ruled by smart contracts.
arXiv Detail & Related papers (2020-10-22T13:19:38Z) - An operational architecture for privacy-by-design in public service
applications [0.26249027950824505]
We present an operational architecture for privacy-by-design based on independent regulatory oversight.
We briefly discuss the feasibility of implementing our architecture based on existing techniques.
arXiv Detail & Related papers (2020-06-08T14:57:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.