論文の概要: Hypergraph reconstruction from network data
- arxiv url: http://arxiv.org/abs/2008.04948v4
- Date: Fri, 14 Jan 2022 00:55:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-31 12:31:14.363158
- Title: Hypergraph reconstruction from network data
- Title(参考訳): ネットワークデータからのハイパーグラフ再構成
- Authors: Jean-Gabriel Young, Giovanni Petri, Tiago P. Peixoto
- Abstract要約: 通常のペアワイズネットワークデータから潜在的高次相互作用を再構築するベイズ的手法を提案する。
本手法は, パーシモニーの原理に基づいており, 十分な統計的証拠が得られた場合にのみ高次構造を含む。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Networks can describe the structure of a wide variety of complex systems by
specifying which pairs of entities in the system are connected. While such
pairwise representations are flexible, they are not necessarily appropriate
when the fundamental interactions involve more than two entities at the same
time. Pairwise representations nonetheless remain ubiquitous, because
higher-order interactions are often not recorded explicitly in network data.
Here, we introduce a Bayesian approach to reconstruct latent higher-order
interactions from ordinary pairwise network data. Our method is based on the
principle of parsimony and only includes higher-order structures when there is
sufficient statistical evidence for them. We demonstrate its applicability to a
wide range of datasets, both synthetic and empirical.
- Abstract(参考訳): ネットワークは、システム内のエンティティのペアが接続されているかを指定することで、様々な複雑なシステムの構造を記述することができる。
このようなペアワイズ表現は柔軟であるが、基本相互作用が同時に2つ以上の実体を含む場合、必ずしも適切ではない。
しかしながら、高次相互作用はネットワークデータに明示的に記録されないことが多いため、ペアワイズ表現はユビキタスである。
本稿では,通常のペアワイズネットワークデータから潜在高次相互作用を再構築するベイズ的手法を提案する。
本手法はparsimonyの原理に基づいており,統計学的証拠が十分ある場合にのみ高次構造を含む。
合成および実験の両方において、幅広いデータセットに適用可能であることを示す。
関連論文リスト
- Defining Neural Network Architecture through Polytope Structures of Dataset [53.512432492636236]
本稿では, ニューラルネットワーク幅の上下境界を定義し, 問題となるデータセットのポリトープ構造から情報を得る。
本研究では,データセットのポリトープ構造を学習したニューラルネットワークから推定できる逆条件を探索するアルゴリズムを開発した。
MNIST、Fashion-MNIST、CIFAR10といった一般的なデータセットは、顔の少ない2つ以上のポリトップを用いて効率的にカプセル化できることが確立されている。
論文 参考訳(メタデータ) (2024-02-04T08:57:42Z) - Learnable Pillar-based Re-ranking for Image-Text Retrieval [119.9979224297237]
画像テキスト検索は、モダリティギャップを埋め、意味的類似性に基づいてモダリティコンテンツを検索することを目的としている。
一般的なポストプロセッシング手法であるリグレードは, 単一モダリティ検索タスクにおいて, 隣り合う関係を捕捉する優位性を明らかにしている。
本稿では,画像テキスト検索のための新しい学習可能な柱型リグレードパラダイムを提案する。
論文 参考訳(メタデータ) (2023-04-25T04:33:27Z) - Bayesian Detection of Mesoscale Structures in Pathway Data on Graphs [0.0]
メソスケール構造は 複雑なシステムの抽象化と解析の 不可欠な部分です
それらは、社会的または引用ネットワークにおけるコミュニティ、企業間相互作用における役割、または輸送ネットワークにおける中核周辺構造におけるコミュニティを表現することができる。
我々は,グループ内のノードの最適分割と高次ネットワークの最適ダイナミクスを同時にモデル化するベイズ的アプローチを導出する。
論文 参考訳(メタデータ) (2023-01-16T12:45:33Z) - On Neural Architecture Inductive Biases for Relational Tasks [76.18938462270503]
合成ネットワーク一般化(CoRelNet)と呼ばれる類似度分布スコアに基づく簡単なアーキテクチャを導入する。
単純なアーキテクチャの選択は、分布外一般化において既存のモデルより優れていることが分かる。
論文 参考訳(メタデータ) (2022-06-09T16:24:01Z) - Learning Dynamics and Structure of Complex Systems Using Graph Neural
Networks [13.509027957413409]
我々は、非線形力学系の例から時系列に適合するようにグラフニューラルネットワークを訓練した。
学習した表現とモデルコンポーネントの簡単な解釈を見出した。
我々は,信念伝達における統計的相互作用と,それに対応する学習ネットワークのパラメータ間のグラフトランスレータの同定に成功した。
論文 参考訳(メタデータ) (2022-02-22T15:58:16Z) - The interplay between ranking and communities in networks [0.0]
本稿では,コミュニティ構造と階層構造との相互作用に基づく生成モデルを提案する。
それぞれのノードが相互作用機構に優先順位を持ち、同じ好みを持つノードが相互作用する可能性が高いと仮定する。
本手法は, コミュニティ検出とランキング抽出の2つの標準手法と比較して, 実世界の合成データと実世界のデータを比較した。
論文 参考訳(メタデータ) (2021-12-23T16:10:28Z) - Layer-stacked Attention for Heterogeneous Network Embedding [0.0]
レイヤスタックATTention Embedding (LATTE)は、各レイヤで上位のメタ関係を自動的に分解するアーキテクチャである。
LATTEは、異なる近傍範囲の異なるタイプのノードに対して、より解釈可能なアグリゲーションスキームを提供する。
帰納的ノード分類タスクと帰納的ノード分類タスクの両方において、LATTEは既存のアプローチと比較して最先端のパフォーマンスを達成することができる。
論文 参考訳(メタデータ) (2020-09-17T05:13:41Z) - Dual-constrained Deep Semi-Supervised Coupled Factorization Network with
Enriched Prior [80.5637175255349]
本稿では、DS2CF-Netと呼ばれる、拡張された事前制約付きDual-Constrained Deep Semi-Supervised Coupled Factorization Networkを提案する。
隠れた深い特徴を抽出するために、DS2CF-Netは、深い構造と幾何学的な構造に制約のあるニューラルネットワークとしてモデル化される。
我々のネットワークは、表現学習とクラスタリングのための最先端の性能を得ることができる。
論文 参考訳(メタデータ) (2020-09-08T13:10:21Z) - Relation-Guided Representation Learning [53.60351496449232]
本稿では,サンプル関係を明示的にモデル化し,活用する表現学習手法を提案する。
私たちのフレームワークは、サンプル間の関係をよく保存します。
サンプルをサブスペースに埋め込むことにより,本手法が大規模なサンプル外問題に対処可能であることを示す。
論文 参考訳(メタデータ) (2020-07-11T10:57:45Z) - Cascaded Human-Object Interaction Recognition [175.60439054047043]
マルチステージで粗大なHOI理解のためのカスケードアーキテクチャを提案する。
各段階で、インスタンスローカライゼーションネットワークは、HOI提案を段階的に洗練し、インタラクション認識ネットワークにフィードする。
慎重に設計された人間中心の関係機能により、これらの2つのモジュールは効果的な相互作用理解に向けて協調的に機能する。
論文 参考訳(メタデータ) (2020-03-09T17:05:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。