Short Shor-style syndrome sequences
- URL: http://arxiv.org/abs/2008.05051v1
- Date: Wed, 12 Aug 2020 01:01:27 GMT
- Title: Short Shor-style syndrome sequences
- Authors: Nicolas Delfosse and Ben W. Reichardt
- Abstract summary: We give both code-specific and general methods, using a variety of techniques and in a variety of settings.
We design new quantum error-correcting codes specifically for efficient error correction, allowing single-shot error correction.
For codes with multiple logical qubits, we give methods for combining error correction with partial logical measurements.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We optimize fault-tolerant quantum error correction to reduce the number of
syndrome bit measurements. Speeding up error correction will also speed up an
encoded quantum computation, and should reduce its effective error rate. We
give both code-specific and general methods, using a variety of techniques and
in a variety of settings. We design new quantum error-correcting codes
specifically for efficient error correction, e.g., allowing single-shot error
correction. For codes with multiple logical qubits, we give methods for
combining error correction with partial logical measurements. There are
tradeoffs in choosing a code and error-correction technique. While to date most
work has concentrated on optimizing the syndrome-extraction procedure, we show
that there are also substantial benefits to optimizing how the measured
syndromes are chosen and used. As an example, we design single-shot measurement
sequences for fault-tolerant quantum error correction with the 16-qubit
extended Hamming code. Our scheme uses 10 syndrome bit measurements, compared
to 40 measurements with the Shor scheme. We design single-shot logical
measurements as well: any logical Z measurement can be made together with
fault-tolerant error correction using only 11 measurements. For comparison,
using the Shor scheme a basic implementation of such a non-destructive logical
measurement uses 63 measurements. We also offer ten open problems, the
solutions of which could lead to substantial improvements of fault-tolerant
error correction.
Related papers
- Quasi-Probabilistic Readout Correction of Mid-Circuit Measurements for Adaptive Feedback via Measurement Randomized Compiling [7.804530685405802]
Quantum measurements are a fundamental component of quantum computing.
On modern-day quantum computers, measurements can be more error prone than quantum gates.
We show that measurement errors can be tailored into a simple error model using randomized compiling.
arXiv Detail & Related papers (2023-12-21T18:57:13Z) - Testing the Accuracy of Surface Code Decoders [55.616364225463066]
Large-scale, fault-tolerant quantum computations will be enabled by quantum error-correcting codes (QECC)
This work presents the first systematic technique to test the accuracy and effectiveness of different QECC decoding schemes.
arXiv Detail & Related papers (2023-11-21T10:22:08Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Suppressing quantum errors by scaling a surface code logical qubit [147.2624260358795]
We report the measurement of logical qubit performance scaling across multiple code sizes.
Our system of superconducting qubits has sufficient performance to overcome the additional errors from increasing qubit number.
Results mark the first experimental demonstration where quantum error correction begins to improve performance with increasing qubit number.
arXiv Detail & Related papers (2022-07-13T18:00:02Z) - Realizing Repeated Quantum Error Correction in a Distance-Three Surface
Code [42.394110572265376]
We demonstrate quantum error correction using the surface code, which is known for its exceptionally high tolerance to errors.
In an error correction cycle taking only $1.1,mu$s, we demonstrate the preservation of four cardinal states of the logical qubit.
arXiv Detail & Related papers (2021-12-07T13:58:44Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Qubit Readout Error Mitigation with Bit-flip Averaging [0.0]
We present a scheme to more efficiently mitigate qubit readout errors on quantum hardware.
Our scheme removes biases in the readout errors allowing a general error model to be built with far fewer calibration measurements.
Our approach can be combined with, and simplify, other mitigation methods allowing tractable mitigation even for large numbers of qubits.
arXiv Detail & Related papers (2021-06-10T15:08:06Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
State-of-the-art quantum platforms typically have physical error rates near $10-3$.
Quantum error correction (QEC) promises to bridge this divide by distributing quantum logical information across many physical qubits.
We implement 1D repetition codes embedded in a 2D grid of superconducting qubits which demonstrate exponential suppression of bit or phase-flip errors.
arXiv Detail & Related papers (2021-02-11T17:11:20Z) - Optimal noise estimation from syndrome statistics of quantum codes [0.7264378254137809]
Quantum error correction allows to actively correct errors occurring in a quantum computation when the noise is weak enough.
Traditionally, this information is obtained by benchmarking the device before operation.
We address the question of what can be learned from only the measurements done during decoding.
arXiv Detail & Related papers (2020-10-05T18:00:26Z) - Beyond single-shot fault-tolerant quantum error correction [0.7734726150561088]
We show that fault-tolerant quantum error correction can be achieved using $O(d log(d))$ measurements for any code.
We prove the existence of a sub-single-shot fault-tolerant quantum error correction scheme using fewer than r measurements.
arXiv Detail & Related papers (2020-02-12T19:04:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.