論文の概要: Metrics for Multi-Class Classification: an Overview
- arxiv url: http://arxiv.org/abs/2008.05756v1
- Date: Thu, 13 Aug 2020 08:41:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-30 22:38:17.080561
- Title: Metrics for Multi-Class Classification: an Overview
- Title(参考訳): マルチクラス分類のためのメトリクス:概要
- Authors: Margherita Grandini, Enrico Bagli, Giorgio Visani
- Abstract要約: 2つ以上のクラスを含む分類タスクを「マルチクラス分類」と呼ぶ
パフォーマンス指標は、異なる分類モデルや機械学習技術を評価し比較する目的において非常に有用である。
- 参考スコア(独自算出の注目度): 0.9176056742068814
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Classification tasks in machine learning involving more than two classes are
known by the name of "multi-class classification". Performance indicators are
very useful when the aim is to evaluate and compare different classification
models or machine learning techniques. Many metrics come in handy to test the
ability of a multi-class classifier. Those metrics turn out to be useful at
different stage of the development process, e.g. comparing the performance of
two different models or analysing the behaviour of the same model by tuning
different parameters. In this white paper we review a list of the most
promising multi-class metrics, we highlight their advantages and disadvantages
and show their possible usages during the development of a classification
model.
- Abstract(参考訳): 2つ以上のクラスを含む機械学習の分類タスクは、"multi-class classification"という名前で知られている。
パフォーマンス指標は、異なる分類モデルや機械学習技術を評価し比較する目的で非常に有用である。
多くのメトリクスは、マルチクラス分類器の能力をテストするのに役立ちます。
これらの指標は、例えば、2つの異なるモデルのパフォーマンスを比較したり、異なるパラメータをチューニングして同じモデルの振る舞いを分析するなど、開発プロセスの異なる段階で有用であることが判明した。
本稿では,最も有望なマルチクラスメトリクスのリストをレビューし,そのメリットとデメリットを強調するとともに,分類モデルの開発における利用可能性を示す。
関連論文リスト
- MLMC: Interactive multi-label multi-classifier evaluation without confusion matrices [52.476815843373515]
Machine-Cは、マルチラベル比較と評価の課題に取り組むビジュアル探索ツールである。
本研究は,Machine-Cが実装した手法により,ユーザフレンドリを維持しつつ,強力なマルチラベル分類器の評価が可能となることを示す。
論文 参考訳(メタデータ) (2025-01-24T12:43:36Z) - Large Language Models For Text Classification: Case Study And Comprehensive Review [0.3428444467046467]
各種言語モデル(LLM)の性能を,最先端のディープラーニングモデルや機械学習モデルと比較して評価する。
本研究は,提案手法に基づくモデル応答の有意な変動を明らかにした。
論文 参考訳(メタデータ) (2025-01-14T22:02:38Z) - Class-Incremental Learning: A Survey [84.30083092434938]
CIL(Class-Incremental Learning)は、学習者が新しいクラスの知識を段階的に取り入れることを可能にする。
CILは、前者の特徴を壊滅的に忘れる傾向にあり、その性能は劇的に低下する。
ベンチマーク画像分類タスクにおける17の手法の厳密で統一的な評価を行い、異なるアルゴリズムの特徴を明らかにする。
論文 参考訳(メタデータ) (2023-02-07T17:59:05Z) - Exploiting Category Names for Few-Shot Classification with
Vision-Language Models [78.51975804319149]
大規模データに事前訓練された視覚言語基礎モデルは、多くの視覚的理解タスクに強力なツールを提供する。
本稿では,カテゴリ名を用いて分類ヘッドを初期化することにより,少数ショット分類の性能を著しく向上させることができることを示す。
論文 参考訳(メタデータ) (2022-11-29T21:08:46Z) - Not All Instances Contribute Equally: Instance-adaptive Class
Representation Learning for Few-Shot Visual Recognition [94.04041301504567]
少数ショットの視覚認識は、いくつかのラベル付きインスタンスから新しい視覚概念を認識することを指す。
本稿では,数ショットの視覚認識を実現するために,インスタンス適応型クラス表現学習ネットワーク(ICRL-Net)と呼ばれる新しいメトリックベースのメタラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-07T10:00:18Z) - Learning-From-Disagreement: A Model Comparison and Visual Analytics
Framework [21.055845469999532]
本稿では,2つの分類モデルを視覚的に比較するフレームワークを提案する。
具体的には、不一致のインスタンスから学ぶために差別者を訓練する。
我々は、訓練された識別器を、異なるメタ特徴のSHAP値で解釈する。
論文 参考訳(メタデータ) (2022-01-19T20:15:35Z) - Interpretation of multi-label classification models using shapley values [0.5482532589225552]
本研究は,shap法を用いて,マルチラベル分類タスクの説明をさらに拡張する。
この実験は、よく知られたマルチラベルデータセット上の異なるアルゴリズムの包括的な比較を示す。
論文 参考訳(メタデータ) (2021-04-21T12:51:12Z) - Learning and Evaluating Representations for Deep One-class
Classification [59.095144932794646]
ディープワンクラス分類のための2段階フレームワークを提案する。
まず,一級データから自己教師付き表現を学習し,学習した表現に基づいて一級分類器を構築する。
実験では、視覚領域の1クラス分類ベンチマークで最先端の性能を示す。
論文 参考訳(メタデータ) (2020-11-04T23:33:41Z) - Meta Learning for Few-Shot One-class Classification [0.0]
メタ学習問題として,一級分類における意味のある特徴の学習を定式化する。
これらの表現を学習するには、類似したタスクからのマルチクラスデータのみが必要である。
数ショットの分類データセットを、数ショットの1クラスの分類シナリオに適応させることで、我々のアプローチを検証する。
論文 参考訳(メタデータ) (2020-09-11T11:35:28Z) - Adversarial Multi-Binary Neural Network for Multi-class Classification [19.298875915675502]
マルチタスクフレームワークを使用して、マルチクラス分類に対処する。
我々は,クラス固有の特徴とクラスに依存しない特徴を識別するために,対人訓練を実践する。
論文 参考訳(メタデータ) (2020-03-25T02:19:17Z) - Unraveling Meta-Learning: Understanding Feature Representations for
Few-Shot Tasks [55.66438591090072]
メタラーニングの基礎となる力学と、メタラーニングを用いて訓練されたモデルと古典的に訓練されたモデルの違いをよりよく理解する。
数ショット分類のための標準訓練ルーチンの性能を高める正則化器を開発した。
論文 参考訳(メタデータ) (2020-02-17T03:18:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。