Cavity-enhanced magnetometer with a spinor Bose-Einstein condensate
- URL: http://arxiv.org/abs/2008.07245v3
- Date: Tue, 6 Apr 2021 08:31:39 GMT
- Title: Cavity-enhanced magnetometer with a spinor Bose-Einstein condensate
- Authors: Karol Gietka, Farokh Mivehvar, Thomas Busch
- Abstract summary: The sensitivity of the proposed magnetometer exhibits Heisenberg-like scaling with respect to the atom number.
We calculate the lower bound on the sensitivity of such a magnetometer to be of the order of fT/$sqrtmathrmHz$--pT/$sqrtmathrmHz$ for a condensate of $104$ atoms with coherence times of the order of several ms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel type of composite light-matter magnetometer based on a
transversely driven multi-component Bose-Einstein condensate coupled to two
distinct electromagnetic modes of a linear cavity. Above the critical pump
strength, the change of the population imbalance of the condensate caused by an
external magnetic field entails the change of relative photon number of the two
cavity modes. Monitoring the cavity output fields thus allows for
nondestructive measurement of the magnetic field in real time. We show that the
sensitivity of the proposed magnetometer exhibits Heisenberg-like scaling with
respect to the atom number. For state-of-the-art experimental parameters, we
calculate the lower bound on the sensitivity of such a magnetometer to be of
the order of fT/$\sqrt{\mathrm{Hz}}$--pT/$\sqrt{\mathrm{Hz}}$ for a condensate
of $10^4$ atoms with coherence times of the order of several ms.
Related papers
- Unambiguous measurement in an unshielded microscale magnetometer with sensitivity below 1 pT/rHz [0.0]
We describe how Hilbert-demodulated optical magnetometry can be realised on cold atom sensors.
We measure a test field to be $ 86.0121261(4) ; mathrmmu T$ in a single shot, achieving dc sensitivity of 380 fT in a duration of 1000 ms.
arXiv Detail & Related papers (2023-09-21T06:56:18Z) - Improving Sensitivity of an Amplitude-Modulated Magneto-Optical Atomic
Magnetometer using Squeezed Light [10.396267889929488]
A squeezed probe optical field can improve the sensitivity of the magnetic field measurements based on nonlinear magneto-optical rotation.
An independent pump field, amplitude-modulated at the Larmor frequency of the bias magnetic field, allows us to extend the range of most sensitive NMOR measurements to sub-Gauss magnetic fields.
arXiv Detail & Related papers (2022-07-26T15:15:44Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - DC Quantum Magnetometry Below the Ramsey Limit [68.8204255655161]
We demonstrate quantum sensing of dc magnetic fields that exceeds the sensitivity of conventional $Tast$-limited dc magnetometry by more than an order of magnitude.
We used nitrogen-vacancy centers in a diamond rotating at periods comparable to the spin coherence time, and characterize the dependence of magnetic sensitivity on measurement time and rotation speed.
arXiv Detail & Related papers (2022-03-27T07:32:53Z) - Colliding-probe bi-atomic magnetometers via energy circulation: Breaking
symmetry-enforced magneto-optical rotation blockade [0.0]
We show a propagation growth blockade in single probe based magnetic field sensing schemes.
We show, both experimentally and theoretically, a colliding probe bi-atomic magnetometer that lifts this NMORE blockade.
The new technique may have broad applications in photon gates and switching operations.
arXiv Detail & Related papers (2022-02-25T15:45:31Z) - Femtotesla nearly quantum-noise-limited pulsed gradiometer at
Earth-scale fields [0.0]
We describe a finite fields magnetic gradiometer using an intense pulsed laser to polarize a $87$Rb atomic ensemble and a compact VCSEL probe laser to detect paramagnetic rotation in a single multipass cell.
arXiv Detail & Related papers (2021-12-16T16:39:11Z) - Surpassing the Energy Resolution Limit with ferromagnetic torque sensors [55.41644538483948]
We evaluate the optimal magnetic field resolution taking into account the thermomechanical noise and the mechanical detection noise at the standard quantum limit.
We find that the Energy Resolution Limit (ERL), pointed out in recent literature, can be surpassed by many orders of magnitude.
arXiv Detail & Related papers (2021-04-29T15:44:12Z) - Single-quadrature quantum magnetometry in cavity electromagnonics [0.0]
Scheme of ultra-sensitive magnetometer in the cavity quantum electromagnonics is proposed.
Intracavity microwave mode coupled to a magnonic mode via magnetic dipole interaction is proposed.
The estimated theoretical sensitivity of the proposed magnetic amplifier-sensor is approximately in the order of $10-18T/sqrtHz$ which is competitive compared to the current state-of-the-art magnetometers.
arXiv Detail & Related papers (2020-11-11T21:23:19Z) - Photon Condensation and Enhanced Magnetism in Cavity QED [68.8204255655161]
A system of magnetic molecules coupled to microwave cavities undergoes the equilibrium superradiant phase transition.
The effect of the coupling is first illustrated by the vacuum-induced ferromagnetic order in a quantum Ising model.
A transmission experiment is shown to resolve the transition, measuring the quantum electrodynamical control of magnetism.
arXiv Detail & Related papers (2020-11-07T11:18:24Z) - Casimir force between Weyl semimetals in a chiral medium [68.8204255655161]
We study the Casimir effect in a system composed of two Weyl semimetals separated by a gap filled with a chiral medium.
We find that if the medium between the two WSMs is a Faraday material, a repulsive Casimir force can be obtained.
arXiv Detail & Related papers (2020-01-28T14:08:45Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.