論文の概要: An Overview on the Web of Clinical Data
- arxiv url: http://arxiv.org/abs/2008.07432v1
- Date: Fri, 14 Aug 2020 17:34:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-06 06:53:18.411994
- Title: An Overview on the Web of Clinical Data
- Title(参考訳): web of clinical data の概要
- Authors: Marco Gori
- Abstract要約: Web of Clinical Data (WCD) は、臨床ハイパーリンクデータの普遍的なリポジトリである。
WCDは、医療に対するAIアプローチとその効果を劇的に変えるだろう。
- 参考スコア(独自算出の注目度): 12.52352583112911
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In the last few years there has been an impressive growth of connections
between medicine and artificial intelligence (AI) that have been characterized
by the specific focus on single problems along with corresponding clinical
data. This paper proposes a new perspective in which the focus is on the
progressive accumulation of a universal repository of clinical hyperlinked data
in the spirit that gave rise to the birth of the Web. The underlining idea is
that this repository, that is referred to as the Web of Clinical Data (WCD),
will dramatically change the AI approach to medicine and its effectiveness. It
is claimed that research and AI-based applications will undergo an evolution
process that will likely reinforce systematically the solutions implemented in
medical apps made available in the WCD. The distinctive architectural feature
of the WCD is that this universal repository will be under control of clinical
units and hospitals, which is claimed to be the natural context for dealing
with the critical issues of clinical data.
- Abstract(参考訳): ここ数年、医学と人工知能(AI)の関連性は著しく成長しており、個々の問題と対応する臨床データに特化していることが特徴である。
本稿では,web の誕生を生起させた精神における臨床的ハイパーリンクデータの普遍的リポジトリの漸進的蓄積に焦点をあてた新しい視点を提案する。
Web of Clinical Data(WCD)と呼ばれるこのリポジトリは、医療に対するAIアプローチとその効果を劇的に変えるだろう。
研究とAIベースのアプリケーションは、WCDで利用可能な医療アプリに実装されたソリューションを体系的に強化するであろう進化プロセスを実行すると主張されている。
WCDの特有なアーキテクチャ上の特徴は、この普遍的なリポジトリが臨床単位と病院の制御下にあることである。
関連論文リスト
- Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
本研究は,人工知能(AI)モデルを用いた医用合成データ生成の臨床評価に焦点を当てた。
本論文は,a) 医用専門家による合成画像の体系的評価のためのプロトコルを提示し,b) 高分解能WCE画像合成のための新しい変分オートエンコーダモデルであるTIDE-IIを評価する。
その結果、TIDE-IIは臨床的に関連性のあるWCE画像を生成し、データの不足に対処し、診断ツールの強化に役立つことがわかった。
論文 参考訳(メタデータ) (2024-10-31T19:48:50Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
本稿では,マルチモーダルデータ(例えば,薬物分子,疾患コード,テキスト,分類・数値的特徴)と臨床治験設計における8つの重要な予測課題をカバーするAIreadyデータセットを精巧にキュレートした。
データセットのユーザビリティと信頼性を確保するため、各タスクに基本的な検証方法を提供する。
このようなオープンアクセスデータセットが利用可能になることは、臨床試験設計のための高度なAIアプローチの開発を促進することを期待する。
論文 参考訳(メタデータ) (2024-06-30T09:13:10Z) - CoRelation: Boosting Automatic ICD Coding Through Contextualized Code
Relation Learning [56.782963838838036]
我々は,ICDコード表現の学習を促進するために,文脈的かつ柔軟なフレームワークである新しい手法を提案する。
提案手法では,可能なすべてのコード関係をモデル化する際の臨床ノートのコンテキストを考慮した,依存型学習パラダイムを採用している。
論文 参考訳(メタデータ) (2024-02-24T03:25:28Z) - GDPR Compliant Collection of Therapist-Patient-Dialogues [48.091760741427656]
我々は、欧州連合の一般データプライバシ規則の下で、精神医学クリニックでセラピストと患者との対話の収集を始める際に直面した課題について詳しく述べる。
本稿では、手順の各ステップの概要を述べ、この分野でのさらなる研究を動機付ける潜在的な落とし穴を指摘した。
論文 参考訳(メタデータ) (2022-11-22T15:51:10Z) - Federated Learning for Medical Applications: A Taxonomy, Current Trends,
Challenges, and Future Research Directions [9.662980267339375]
我々は, acFLの医学的応用, 特にグローバル癌診断の文脈に焦点をあてる。
acFLの最近の発展により、複雑な機械学習モデルを分散的に訓練することが可能になった。
論文 参考訳(メタデータ) (2022-08-05T21:41:15Z) - OpenClinicalAI: enabling AI to diagnose diseases in real-world clinical
settings [11.287929392365756]
我々は、研究を促進するためにリアルな臨床環境を構築するために、臨床AIBenchという名の臨床AIベンチマークを構築した。
我々はオープンでダイナミックな機械学習フレームワークを提案し、リアルな臨床環境で病気を診断するOpenClinicalAIと呼ばれるAIシステムを開発した。
実際の臨床環境では、OpenClinicalAIは最先端のAIシステムを大幅に上回っている。
論文 参考訳(メタデータ) (2021-09-09T02:59:36Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
本稿では,ドメイン固有パスマッチングのためのトランスフォーマー言語モデルをトレーニングするためのルールベースのセルフスーパービジョンであるCAPRを紹介する。
目的をトランスフォーマーベースの4つのアーキテクチャ、コンテキスト文書ベクトル、ビ-、ポリエンコーダ、クロスエンコーダに適用する。
本稿では,ドメイン固有パスの検索において,CAPRが強いベースラインを上回り,ルールベースおよび人間ラベル付きパスを効果的に一般化することを示す。
論文 参考訳(メタデータ) (2021-08-02T10:42:52Z) - Medical Imaging and Machine Learning [16.240472115235253]
2018年に国立衛生研究所は、医療画像における人工知能の未来における重要な焦点領域を特定した。
データ可用性、新しいコンピューティングアーキテクチャと説明可能なAIアルゴリズムの必要性は、いまだに関係している。
本稿では,高次元臨床画像データに特有の課題について考察するとともに,技術的・倫理的考察を紹介する。
論文 参考訳(メタデータ) (2021-03-02T18:53:39Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z) - Bridging the gap between AI and Healthcare sides: towards developing
clinically relevant AI-powered diagnosis systems [18.95904791202457]
医療・インフォマティクスにおける医療画像の専門家,医師,ジェネラリストを対象に,臨床的に価値のあるAI研究ワークショップを開催した。
そこで, 医師を対象としたアンケート調査により, データ拡張と医師養成の観点から, GANに基づく画像拡張プロジェクトを評価した。
論文 参考訳(メタデータ) (2020-01-12T12:45:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。