Entanglement entropy scaling transition under competing monitoring
protocols
- URL: http://arxiv.org/abs/2008.08619v2
- Date: Thu, 25 Feb 2021 17:17:24 GMT
- Title: Entanglement entropy scaling transition under competing monitoring
protocols
- Authors: Mathias Van Regemortel, Ze-Pei Cian, Alireza Seif, Hossein Dehghani,
and Mohammad Hafezi
- Abstract summary: We analyze the competition between two different dissipation channels arising from two incompatible continuous monitoring protocols.
By studying the trajectory of quantum trajectories associated with the continuous monitoring protocols, we present a transition for the scaling of the averaged entanglement entropies.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dissipation generally leads to the decoherence of a quantum state. In
contrast, numerous recent proposals have illustrated that dissipation can also
be tailored to stabilize many-body entangled quantum states. While the focus of
these works has been primarily on engineering the non-equilibrium steady state,
we investigate the build-up of entanglement in the quantum trajectories.
Specifically, we analyze the competition between two different dissipation
channels arising from two incompatible continuous monitoring protocols. The
first protocol locks the phase of neighboring sites upon registering a quantum
jump, thereby generating a long-range entanglement through the system, while
the second destroys the coherence via a dephasing mechanism. By studying the
unraveling of stochastic quantum trajectories associated with the continuous
monitoring protocols, we present a transition for the scaling of the averaged
trajectory entanglement entropies, from critical scaling to area-law behavior.
Our work provides an alternative perspective on the measurement-induced phase
transition: the measurement can be viewed as monitoring and registering quantum
jumps, offering an intriguing extension of these phase transitions through the
long-established realm of quantum optics.
Related papers
- Experimental demonstration of scalable cross-entropy benchmarking to
detect measurement-induced phase transitions on a superconducting quantum
processor [0.0]
We propose a protocol to detect entanglement phase transitions using linear cross-entropy.
We demonstrate this protocol in systems with one-dimensional and all-to-all connectivities on IBM's quantum hardware on up to 22 qubits.
Our demonstration paves the way for studies of measurement-induced entanglement phase transitions and associated critical phenomena on larger near-term quantum systems.
arXiv Detail & Related papers (2024-03-01T19:35:54Z) - Probing critical phenomena in open quantum systems using atom arrays [3.365378662696971]
At quantum critical points, correlations decay as a power law, with exponents determined by a set of universal scaling dimensions.
Here, we employ a Rydberg quantum simulator to adiabatically prepare critical ground states of both a one-dimensional ring and a two-dimensional square lattice.
By accounting for and tuning the openness of our quantum system, we are able to directly observe power-law correlations and extract the corresponding scaling dimensions.
arXiv Detail & Related papers (2024-02-23T15:21:38Z) - Diagnosing Quantum Phases Using Long-Range Two-Site Quantum Resource
Behaviors [0.16777183511743465]
We show that the behaviors of long-range, two-site quantum resources can effectively diagnose quantum phases.
In particular, we discover the quantum resource freezing phenomenon, where topologically protected long-range quantum resources may have potential applications in quantum information processing.
arXiv Detail & Related papers (2023-11-08T08:00:32Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Multipartite Entanglement in the Measurement-Induced Phase Transition of
the Quantum Ising Chain [77.34726150561087]
External monitoring of quantum many-body systems can give rise to a measurement-induced phase transition.
We show that this transition extends beyond bipartite correlations to multipartite entanglement.
arXiv Detail & Related papers (2023-02-13T15:54:11Z) - Dynamical quantum phase transitions in a spinor Bose-Einstein condensate
and criticality enhanced quantum sensing [2.3046646540823916]
Quantum phase transitions universally exist in the ground and excited states of quantum many-body systems.
We unravel that both the ground and excited-state quantum phase transitions in spinor condensates can be diagnosed with dynamical phase transitions.
This work advances the exploration of excited-state quantum phase transitions via a scheme that can immediately be applied to a broad class of few-mode quantum systems.
arXiv Detail & Related papers (2022-09-23T05:27:17Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Universality of entanglement transitions from stroboscopic to continuous
measurements [68.8204255655161]
We show that the entanglement transition at finite coupling persists if the continuously measured system is randomly nonintegrable.
This provides a bridge between a wide range of experimental settings and the wealth of knowledge accumulated for the latter systems.
arXiv Detail & Related papers (2020-05-04T21:45:59Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z) - Measurement-induced dynamics of many-body systems at quantum criticality [0.0]
We study the interplay between unitary Hamiltonian driving and random local projective measurements.
The power law of the decay of quantum correlations turns out to be enhanced at the quantum transition.
arXiv Detail & Related papers (2020-01-30T18:51:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.