OrientedFormer: An End-to-End Transformer-Based Oriented Object Detector in Remote Sensing Images
- URL: http://arxiv.org/abs/2409.19648v1
- Date: Sun, 29 Sep 2024 10:36:33 GMT
- Title: OrientedFormer: An End-to-End Transformer-Based Oriented Object Detector in Remote Sensing Images
- Authors: Jiaqi Zhao, Zeyu Ding, Yong Zhou, Hancheng Zhu, Wen-Liang Du, Rui Yao, Abdulmotaleb El Saddik,
- Abstract summary: Oriented object detection in remote sensing images is a challenging task due to objects being distributed in multi-orientation.
We propose an end-to-end transformer-based oriented object detector consisting of three dedicated modules to address these issues.
Compared with previous end-to-end detectors, the OrientedFormer gains 1.16 and 1.21 AP$_50$ on DIOR-R and DOTA-v1.0 respectively, while reducing training epochs from 3$times$ to 1$times$.
- Score: 26.37802649901314
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Oriented object detection in remote sensing images is a challenging task due to objects being distributed in multi-orientation. Recently, end-to-end transformer-based methods have achieved success by eliminating the need for post-processing operators compared to traditional CNN-based methods. However, directly extending transformers to oriented object detection presents three main issues: 1) objects rotate arbitrarily, necessitating the encoding of angles along with position and size; 2) the geometric relations of oriented objects are lacking in self-attention, due to the absence of interaction between content and positional queries; and 3) oriented objects cause misalignment, mainly between values and positional queries in cross-attention, making accurate classification and localization difficult. In this paper, we propose an end-to-end transformer-based oriented object detector, consisting of three dedicated modules to address these issues. First, Gaussian positional encoding is proposed to encode the angle, position, and size of oriented boxes using Gaussian distributions. Second, Wasserstein self-attention is proposed to introduce geometric relations and facilitate interaction between content and positional queries by utilizing Gaussian Wasserstein distance scores. Third, oriented cross-attention is proposed to align values and positional queries by rotating sampling points around the positional query according to their angles. Experiments on six datasets DIOR-R, a series of DOTA, HRSC2016 and ICDAR2015 show the effectiveness of our approach. Compared with previous end-to-end detectors, the OrientedFormer gains 1.16 and 1.21 AP$_{50}$ on DIOR-R and DOTA-v1.0 respectively, while reducing training epochs from 3$\times$ to 1$\times$. The codes are available at https://github.com/wokaikaixinxin/OrientedFormer.
Related papers
- DPDETR: Decoupled Position Detection Transformer for Infrared-Visible Object Detection [42.70285733630796]
Infrared-visible object detection aims to achieve robust object detection by leveraging the complementary information of infrared and visible image pairs.
fusing misalignment complementary features is difficult, and current methods cannot accurately locate objects in both modalities under misalignment conditions.
We propose a Decoupled Position Detection Transformer to address these problems.
Experiments on DroneVehicle and KAIST datasets demonstrate significant improvements compared to other state-of-the-art methods.
arXiv Detail & Related papers (2024-08-12T13:05:43Z) - V-DETR: DETR with Vertex Relative Position Encoding for 3D Object
Detection [73.37781484123536]
We introduce a highly performant 3D object detector for point clouds using the DETR framework.
To address the limitation, we introduce a novel 3D Relative Position (3DV-RPE) method.
We show exceptional results on the challenging ScanNetV2 benchmark.
arXiv Detail & Related papers (2023-08-08T17:14:14Z) - Adaptive Rotated Convolution for Rotated Object Detection [96.94590550217718]
We present Adaptive Rotated Convolution (ARC) module to handle rotated object detection problem.
In our ARC module, the convolution kernels rotate adaptively to extract object features with varying orientations in different images.
The proposed approach achieves state-of-the-art performance on the DOTA dataset with 81.77% mAP.
arXiv Detail & Related papers (2023-03-14T11:53:12Z) - Phase-Shifting Coder: Predicting Accurate Orientation in Oriented Object
Detection [10.99534239215483]
A novel differentiable angle coder named phase-shifting coder (PSC) is proposed to accurately predict the orientation of objects.
We provide a unified framework for various periodic fuzzy problems in oriented object detection.
Visual analysis and experiments on three datasets prove the effectiveness and the potentiality of our approach.
arXiv Detail & Related papers (2022-11-11T17:31:25Z) - Oriented Object Detection in Aerial Images Based on Area Ratio of
Parallelogram [0.0]
Rotated object detection is a challenging task in aerial images.
Existing regression-based rotation detectors suffer the problem of discontinuous boundaries.
We propose a simple effective framework to address the above challenges.
arXiv Detail & Related papers (2021-09-21T14:13:36Z) - Progressive Coordinate Transforms for Monocular 3D Object Detection [52.00071336733109]
We propose a novel and lightweight approach, dubbed em Progressive Coordinate Transforms (PCT) to facilitate learning coordinate representations.
In this paper, we propose a novel and lightweight approach, dubbed em Progressive Coordinate Transforms (PCT) to facilitate learning coordinate representations.
arXiv Detail & Related papers (2021-08-12T15:22:33Z) - Orienting Novel 3D Objects Using Self-Supervised Learning of Rotation
Transforms [22.91890127146324]
Orienting objects is a critical component in the automation of many packing and assembly tasks.
We train a deep neural network to estimate the 3D rotation as parameterized by a quaternion.
We then use the trained network in a proportional controller to re-orient objects based on the estimated rotation between the two depth images.
arXiv Detail & Related papers (2021-05-29T08:22:55Z) - MRDet: A Multi-Head Network for Accurate Oriented Object Detection in
Aerial Images [51.227489316673484]
We propose an arbitrary-oriented region proposal network (AO-RPN) to generate oriented proposals transformed from horizontal anchors.
To obtain accurate bounding boxes, we decouple the detection task into multiple subtasks and propose a multi-head network.
Each head is specially designed to learn the features optimal for the corresponding task, which allows our network to detect objects accurately.
arXiv Detail & Related papers (2020-12-24T06:36:48Z) - Align Deep Features for Oriented Object Detection [40.28244152216309]
We propose a single-shot Alignment Network (S$2$A-Net) consisting of two modules: a Feature Alignment Module (FAM) and an Oriented Detection Module (ODM)
The FAM can generate high-quality anchors with an Anchor Refinement Network and adaptively align the convolutional features according to the anchor boxes with a novel Alignment Convolution.
The ODM first adopts active rotating filters to encode the orientation information and then produces orientation-sensitive and orientation-invariant features to alleviate the inconsistency between classification score and localization accuracy.
arXiv Detail & Related papers (2020-08-21T09:55:13Z) - On the Arbitrary-Oriented Object Detection: Classification based
Approaches Revisited [94.5455251250471]
We first show that the boundary problem suffered in existing dominant regression-based rotation detectors, is caused by angular periodicity or corner ordering.
We transform the angular prediction task from a regression problem to a classification one.
For the resulting circularly distributed angle classification problem, we first devise a Circular Smooth Label technique to handle the periodicity of angle and increase the error tolerance to adjacent angles.
arXiv Detail & Related papers (2020-03-12T03:23:54Z) - Robust 6D Object Pose Estimation by Learning RGB-D Features [59.580366107770764]
We propose a novel discrete-continuous formulation for rotation regression to resolve this local-optimum problem.
We uniformly sample rotation anchors in SO(3), and predict a constrained deviation from each anchor to the target, as well as uncertainty scores for selecting the best prediction.
Experiments on two benchmarks: LINEMOD and YCB-Video, show that the proposed method outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2020-02-29T06:24:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.