論文の概要: Cross-lingual Semantic Role Labeling with Model Transfer
- arxiv url: http://arxiv.org/abs/2008.10284v1
- Date: Mon, 24 Aug 2020 09:37:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-25 11:49:43.610887
- Title: Cross-lingual Semantic Role Labeling with Model Transfer
- Title(参考訳): モデル伝達を用いた言語間セマンティックロールラベリング
- Authors: Hao Fei and Meishan Zhang and Fei Li and Donghong Ji
- Abstract要約: 言語間セマンティックロールラベリングは、普遍的な特徴の助けを借りてモデル転送によって達成できる。
本稿では,多種多様なユニバーサル特徴と転送手法を組み込んだエンドツーエンドSRLモデルを提案する。
- 参考スコア(独自算出の注目度): 49.85316125365497
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prior studies show that cross-lingual semantic role labeling (SRL) can be
achieved by model transfer under the help of universal features. In this paper,
we fill the gap of cross-lingual SRL by proposing an end-to-end SRL model that
incorporates a variety of universal features and transfer methods. We study
both the bilingual transfer and multi-source transfer, under gold or
machine-generated syntactic inputs, pre-trained high-order abstract features,
and contextualized multilingual word representations. Experimental results on
the Universal Proposition Bank corpus indicate that performances of the
cross-lingual SRL can vary by leveraging different cross-lingual features. In
addition, whether the features are gold-standard also has an impact on
performances. Precisely, we find that gold syntax features are much more
crucial for cross-lingual SRL, compared with the automatically-generated ones.
Moreover, universal dependency structure features are able to give the best
help, and both pre-trained high-order features and contextualized word
representations can further bring significant improvements.
- Abstract(参考訳): 先行研究では、言語間意味的役割ラベリング(srl)は普遍的な特徴の助けを借りてモデル転送によって達成できることが示されている。
本稿では,多種多様な普遍的特徴と伝達手法を組み込んだエンドツーエンドSRLモデルを提案することにより,言語間SRLのギャップを埋める。
金や機械による構文入力、事前訓練された高次抽象的特徴、文脈化された多言語単語表現など、バイリンガルトランスファーとマルチソーストランスファーの両方について検討する。
普遍命題バンクコーパスにおける実験結果から, 言語間srlの性能は, 異なる言語間特徴の活用により異なることが示された。
さらに、機能がゴールドスタンダードであるかどうかもパフォーマンスに影響を与えます。
正確には、自動生成機能と比較して、金の構文機能は言語間SRLにとってはるかに重要である。
さらに、ユニバーサル依存性構造機能は最善の助けとなり、事前訓練された高次機能とコンテキスト化された単語表現の両方が、さらに大きな改善をもたらす可能性がある。
関連論文リスト
- ShifCon: Enhancing Non-Dominant Language Capabilities with a Shift-based Contrastive Framework [79.72910257530795]
ShifConはShiftベースのContrastiveフレームワークで、他の言語の内部の前進プロセスを支配的な言語に合わせる。
非支配的な言語の表現を支配的な言語サブスペースに移行し、モデルパラメータにエンコードされた比較的リッチな情報にアクセスできるようにする。
実験により、我々のShifConフレームワークは、非支配言語の性能を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2024-10-25T10:28:59Z) - Cross-lingual Back-Parsing: Utterance Synthesis from Meaning Representation for Zero-Resource Semantic Parsing [6.074150063191985]
Cross-Lingual Back-Parsing(クロスリンガル・バック・パーシング)は、セマンティック・パーシングのためのクロスリンガル・トランスファーを強化するために設計された新しいデータ拡張手法である。
提案手法は,ゼロリソース設定に挑戦する上で,言語間データ拡張を効果的に行う。
論文 参考訳(メタデータ) (2024-10-01T08:53:38Z) - Self-Augmentation Improves Zero-Shot Cross-Lingual Transfer [92.80671770992572]
言語間移動は多言語NLPにおける中心的なタスクである。
このタスクの以前の作業では、並列コーパス、バイリンガル辞書、その他の注釈付きアライメントデータを使用していた。
ゼロショットの言語間移動を改善するため, 単純で効果的なSALT法を提案する。
論文 参考訳(メタデータ) (2023-09-19T19:30:56Z) - VECO 2.0: Cross-lingual Language Model Pre-training with
Multi-granularity Contrastive Learning [56.47303426167584]
複数粒度アライメントを持つコントラスト学習に基づく言語間事前学習モデルVECO2.0を提案する。
具体的には、シーケンス・ツー・シーケンスアライメントが誘導され、並列対の類似性を最大化し、非並列対を最小化する。
トークン・ツー・トークンのアライメントは、シソーラス辞書を介して発掘された同義トークンと、バイリンガルな例の他の未使用トークンとのギャップを埋めるために統合される。
論文 参考訳(メタデータ) (2023-04-17T12:23:41Z) - DiTTO: A Feature Representation Imitation Approach for Improving
Cross-Lingual Transfer [15.062937537799005]
ゼロショット転送を改善するためのドメインとしての言語。
我々のアプローチであるDiTTOは、標準のゼロショット微調整法よりも大幅に優れていることを示す。
我々のモデルは、数ショット設定であっても、標準的な微調整法よりも言語間移動がより良くできる。
論文 参考訳(メタデータ) (2023-03-04T08:42:50Z) - Transition-based Semantic Role Labeling with Pointer Networks [0.40611352512781856]
本稿では,1つの左から右へのパスで入力文を完全に処理できる,トランジッションベースのSRLアプローチを提案する。
Pointer Networksをベースとした実装のおかげで、完全なSRLは$O(n2)$で正確かつ効率的に実行できる。
論文 参考訳(メタデータ) (2022-05-20T08:38:44Z) - VECO: Variable and Flexible Cross-lingual Pre-training for Language
Understanding and Generation [77.82373082024934]
我々はTransformerエンコーダにクロスアテンションモジュールを挿入し、言語間の相互依存を明確に構築する。
独自の言語でコンテキストにのみ条件付けされたマスク付き単語の予測の退化を効果的に回避することができる。
提案した言語間モデルでは,XTREMEベンチマークのさまざまな言語間理解タスクに対して,最先端の新たな結果が提供される。
論文 参考訳(メタデータ) (2020-10-30T03:41:38Z) - X-SRL: A Parallel Cross-Lingual Semantic Role Labeling Dataset [18.389328059694037]
本研究では,英語,フランス語,ドイツ語,スペイン語の4言語で並列なSRLコーパスを自動構築する手法を提案する。
我々は,投影品質を測定するために使用する有能なテストセットを含め,プロジェクションが強いベースラインよりも密度が高く,精度が高いことを示す。最後に,モノリンガルSRLとマルチリンガルSRLのための新しいコーパスで異なるSOTAモデルを訓練し,多言語アノテーションが特に弱い言語の性能を向上させることを示す。
論文 参考訳(メタデータ) (2020-10-05T13:34:20Z) - A Study of Cross-Lingual Ability and Language-specific Information in
Multilingual BERT [60.9051207862378]
Multilingual BERTは、言語間転送タスクで驚くほどうまく機能します。
データサイズとコンテキストウィンドウサイズは、転送可能性にとって重要な要素です。
多言語BERTの言語間能力を改善するために、計算的に安価だが効果的なアプローチがある。
論文 参考訳(メタデータ) (2020-04-20T11:13:16Z) - Cross-Lingual Semantic Role Labeling with High-Quality Translated
Training Corpus [41.031187560839555]
言語間セマンティックロールのラベル付けは、この問題に対処するための有望な方法である。
目的言語のための高品質なトレーニングデータセットを構築するためのコーパス翻訳に基づく新しい代替案を提案する。
ユニバーサル・プロポーション・バンクの実験結果から, 翻訳法が有効であることが示唆された。
論文 参考訳(メタデータ) (2020-04-14T04:16:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。