Cascade Convolutional Neural Network for Image Super-Resolution
- URL: http://arxiv.org/abs/2008.10329v2
- Date: Tue, 25 Aug 2020 09:31:23 GMT
- Title: Cascade Convolutional Neural Network for Image Super-Resolution
- Authors: Jianwei Zhang and zhenxing Wang and yuhui Zheng and Guoqing Zhang
- Abstract summary: We propose a cascaded convolution neural network for image super-resolution (CSRCNN)
Images of different scales can be trained simultaneously and the learned network can make full use of the information resided in different scales of images.
- Score: 15.650515790147189
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the development of the super-resolution convolutional neural network
(SRCNN), deep learning technique has been widely applied in the field of image
super-resolution. Previous works mainly focus on optimizing the structure of
SRCNN, which have been achieved well performance in speed and restoration
quality for image super-resolution. However, most of these approaches only
consider a specific scale image during the training process, while ignoring the
relationship between different scales of images. Motivated by this concern, in
this paper, we propose a cascaded convolution neural network for image
super-resolution (CSRCNN), which includes three cascaded Fast SRCNNs and each
Fast SRCNN can process a specific scale image. Images of different scales can
be trained simultaneously and the learned network can make full use of the
information resided in different scales of images. Extensive experiments show
that our network can achieve well performance for image SR.
Related papers
- Adaptive Convolutional Neural Network for Image Super-resolution [43.06377001247278]
We propose a adaptive convolutional neural network for image super-resolution (ADSRNet)
The upper network can enhance relation of context information, salient information relation of a kernel mapping and relations of shallow and deep layers.
The lower network utilizes a symmetric architecture to enhance relations of different layers to mine more structural information.
arXiv Detail & Related papers (2024-02-24T03:44:06Z) - RDRN: Recursively Defined Residual Network for Image Super-Resolution [58.64907136562178]
Deep convolutional neural networks (CNNs) have obtained remarkable performance in single image super-resolution.
We propose a novel network architecture which utilizes attention blocks efficiently.
arXiv Detail & Related papers (2022-11-17T11:06:29Z) - Image Super-resolution with An Enhanced Group Convolutional Neural
Network [102.2483249598621]
CNNs with strong learning abilities are widely chosen to resolve super-resolution problem.
We present an enhanced super-resolution group CNN (ESRGCNN) with a shallow architecture.
Experiments report that our ESRGCNN surpasses the state-of-the-arts in terms of SISR performance, complexity, execution speed, image quality evaluation and visual effect in SISR.
arXiv Detail & Related papers (2022-05-29T00:34:25Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
This paper presents a holistic goal of maintaining spatially-precise high-resolution representations through the entire network.
We learn an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
Our approach achieves state-of-the-art results for a variety of image processing tasks, including defocus deblurring, image denoising, super-resolution, and image enhancement.
arXiv Detail & Related papers (2022-04-19T17:59:45Z) - Deep Unrolled Network for Video Super-Resolution [0.45880283710344055]
Video super-resolution (VSR) aims to reconstruct a sequence of high-resolution (HR) images from their corresponding low-resolution (LR) versions.
Traditionally, solving a VSR problem has been based on iterative algorithms that exploit prior knowledge on image formation and assumptions on the motion.
Deep learning (DL) algorithms can efficiently learn spatial patterns from large collections of images.
We propose a new VSR neural network based on unrolled optimization techniques and discuss its performance.
arXiv Detail & Related papers (2021-02-23T14:35:09Z) - WDN: A Wide and Deep Network to Divide-and-Conquer Image
Super-resolution [0.0]
Divide and conquer is an established algorithm design paradigm that has proven itself to solve a variety of problems efficiently.
We propose an approach to divide the problem of image super-resolution into multiple sub-problems and then solve/conquer them with the help of a neural network.
arXiv Detail & Related papers (2020-10-07T06:15:11Z) - Deep Iterative Residual Convolutional Network for Single Image
Super-Resolution [31.934084942626257]
We propose a deep Iterative Super-Resolution Residual Convolutional Network (ISRResCNet)
It exploits the powerful image regularization and large-scale optimization techniques by training the deep network in an iterative manner with a residual learning approach.
Our method with a few trainable parameters improves the results for different scaling factors in comparison with the state-of-art methods.
arXiv Detail & Related papers (2020-09-07T12:54:14Z) - Real Image Super Resolution Via Heterogeneous Model Ensemble using
GP-NAS [63.48801313087118]
We propose a new method for image superresolution using deep residual network with dense skip connections.
The proposed method won the first place in all three tracks of the AIM 2020 Real Image Super-Resolution Challenge.
arXiv Detail & Related papers (2020-09-02T22:33:23Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
Recent work has shown that the structure of deep convolutional neural networks can be used as a structured image prior.
We propose to search for neural architectures that capture stronger image priors.
We search for an improved network by leveraging an existing neural architecture search algorithm.
arXiv Detail & Related papers (2020-08-26T17:59:36Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.