論文の概要: The Fairness-Accuracy Pareto Front
- arxiv url: http://arxiv.org/abs/2008.10797v2
- Date: Thu, 18 Nov 2021 22:58:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-25 03:08:50.682771
- Title: The Fairness-Accuracy Pareto Front
- Title(参考訳): フェアネス・正確なパレートフロント
- Authors: Susan Wei, Marc Niethammer
- Abstract要約: アルゴリズムフェアネスは、機械学習アルゴリズムのバイアス源を特定し、修正しようとする。
アルゴリズムの公正性において、この基本的な緊張を和らげるための公式なツールを提供する。
- 参考スコア(独自算出の注目度): 19.556904444436523
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Algorithmic fairness seeks to identify and correct sources of bias in machine
learning algorithms. Confoundingly, ensuring fairness often comes at the cost
of accuracy. We provide formal tools in this work for reconciling this
fundamental tension in algorithm fairness. Specifically, we put to use the
concept of Pareto optimality from multi-objective optimization and seek the
fairness-accuracy Pareto front of a neural network classifier. We demonstrate
that many existing algorithmic fairness methods are performing the so-called
linear scalarization scheme which has severe limitations in recovering Pareto
optimal solutions. We instead apply the Chebyshev scalarization scheme which is
provably superior theoretically and no more computationally burdensome at
recovering Pareto optimal solutions compared to the linear scheme.
- Abstract(参考訳): アルゴリズムフェアネスは、機械学習アルゴリズムのバイアス源を特定し、修正しようとする。
結論として、公平さの確保は、しばしば正確さの犠牲になる。
アルゴリズムフェアネスにおけるこの基本的な緊張を和らげるための形式的なツールを提供する。
具体的には、多目的最適化からParetoの最適性の概念を使い、ニューラルネットワーク分類器の正当性-正確性を求める。
既存のアルゴリズムフェアネス法の多くが,パレート最適解の回復に厳しい制約を持つ線形スカラー化方式を実践していることを示す。
その代わり、理論上はより優れており、パレート最適解を回復するのに計算上負担を要しないチェビシェフスカラー化スキームを線形スキームと比較して適用する。
関連論文リスト
- Inference for an Algorithmic Fairness-Accuracy Frontier [0.9147443443422864]
We provide a consistent estimator for a theoretical fairness-accuracy frontier forward by Liang, Lu and Mu (2023)
フェアネス文学で注目されている仮説を検証するための推論手法を提案する。
サンプルサイズが大きくなるにつれて, 推定された支持関数が密なプロセスに収束することを示す。
論文 参考訳(メタデータ) (2024-02-14T00:56:09Z) - Boosting Fair Classifier Generalization through Adaptive Priority Reweighing [59.801444556074394]
より優れた一般化性を持つ性能向上フェアアルゴリズムが必要である。
本稿では,トレーニングデータとテストデータ間の分散シフトがモデル一般化性に与える影響を解消する適応的リライジング手法を提案する。
論文 参考訳(メタデータ) (2023-09-15T13:04:55Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
1つの典型的な戦略はアルゴリズムのアンローリングであり、これは反復解法の操作による自動微分に依存している。
本稿では,非ロール最適化の後方通過に関する理論的知見を提供し,効率よく解けるバックプロパゲーション解析モデルを生成するシステムに繋がる。
論文 参考訳(メタデータ) (2023-01-28T01:50:42Z) - Making Linear MDPs Practical via Contrastive Representation Learning [101.75885788118131]
マルコフ決定過程(MDP)における次元性の呪いに、低ランク表現を利用することで対処することが一般的である。
本稿では,効率的な表現学習を可能にしつつ,正規化を自動的に保証する線形MDPの代替的定義について考察する。
いくつかのベンチマークにおいて、既存の最先端モデルベースおよびモデルフリーアルゴリズムよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-07-14T18:18:02Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
空間的制約が存在する場合の高次元統計量と非破壊的最適化の関連について検討する。
これらの問題に対する新規で簡単な最適化法を開発した。
結論として、効率よくステーションに収束する一階法は、これらのタスクに対して効率的なアルゴリズムを導出する。
論文 参考訳(メタデータ) (2021-09-23T17:38:24Z) - Pareto Efficient Fairness in Supervised Learning: From Extraction to
Tracing [26.704236797908177]
アルゴリズムによる意思決定システムの普及が進んでいる。
測定と精度の本質的にのトレードオフのため、全体的な損失とその他の基準とのトレードオフを確保することが望ましい。
定義に依存しない、つまり、明確に定義された概念を PEF の概念に還元できることを意味する。
論文 参考訳(メタデータ) (2021-04-04T15:49:35Z) - Large-Scale Methods for Distributionally Robust Optimization [53.98643772533416]
我々のアルゴリズムは、トレーニングセットのサイズとパラメータの数によらず、多くの評価勾配を必要とすることを証明している。
MNIST と ImageNet の実験により,本手法の 9-36 倍の効率性を持つアルゴリズムの理論的スケーリングが確認された。
論文 参考訳(メタデータ) (2020-10-12T17:41:44Z) - Accuracy and Fairness Trade-offs in Machine Learning: A Stochastic
Multi-Objective Approach [0.0]
機械学習を実生活の意思決定システムに適用すると、予測結果は機密性の高い属性を持つ人々に対して差別され、不公平になる可能性がある。
公正機械学習における一般的な戦略は、予測損失の最小化において、制約や罰則として公正さを含めることである。
本稿では,多目的最適化問題を定式化して公平性を扱うための新しい手法を提案する。
論文 参考訳(メタデータ) (2020-08-03T18:51:24Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z) - Gamification of Pure Exploration for Linear Bandits [34.16123941778227]
線形バンディットの文脈において、ベストアーム識別を含む活発な純粋探索環境について検討する。
標準的なマルチアームバンディットには最適アルゴリズムが存在するが、リニアバンディットにおけるベストアーム識別のためのアルゴリズムの存在は明白である。
線形帯域における固定信頼純粋探索のための第一の洞察的最適アルゴリズムを設計する。
論文 参考訳(メタデータ) (2020-07-02T08:20:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。