The atomic damping basis and the collective decay of interacting
two-level atoms
- URL: http://arxiv.org/abs/2008.11056v1
- Date: Tue, 25 Aug 2020 14:29:37 GMT
- Title: The atomic damping basis and the collective decay of interacting
two-level atoms
- Authors: W. Alvarez-Giron, P. Barberis-Blostein
- Abstract summary: We find analytical solutions to the evolution of interacting two-level atoms when the master equation is symmetric under the permutation of atomic labels.
The solutions show that the system decays as a sum of sub- and super-radiant exponential terms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We find analytical solutions to the evolution of interacting two-level atoms
when the master equation is symmetric under the permutation of atomic labels.
The master equation includes atomic independent dissipation. The method to
obtain the solutions is: First, we use the system symmetries to describe the
evolution in an operator space whose dimension grows polynomially with the
number of atoms. Second, we expand the solutions in a basis composed of
eigenvectors of the dissipative part of the master equation that models the
independent dissipation of the atoms. This atomic damping basis is an atomic
analog to the damping basis used for bosonic fields. The solutions show that
the system decays as a sum of sub- and super-radiant exponential terms.
Related papers
- Exact dynamics of quantum dissipative $XX$ models: Wannier-Stark localization in the fragmented operator space [49.1574468325115]
We find an exceptional point at a critical dissipation strength that separates oscillating and non-oscillating decay.
We also describe a different type of dissipation that leads to a single decay mode in the whole operator subspace.
arXiv Detail & Related papers (2024-05-27T16:11:39Z) - Strongly subradiant states in planar atomic arrays [39.58317527488534]
We study collective dipolar oscillations in finite planar arrays of quantum emitters in free space.
We show that the external coupling between the collective states associated with the symmetry of the array and with the quasi-flat dispersion of the corresponding infinite lattice plays a crucial role in the boost of their radiative lifetime.
arXiv Detail & Related papers (2023-10-10T17:06:19Z) - Trapped ion-mediated interactions between two distant trapped atoms [0.0]
We show that when two largely separated atoms interact with a trapped ion via Rydberg excitation of the atoms, the ion-mediated interaction exceeds the direct atom-atom interaction by several orders of magnitude.
Since the motion of the atoms is much slower than the motion of the ion, we resort to Born-Oppenheimer approximation to calculate the ion-mediated adiabatic potential.
arXiv Detail & Related papers (2023-10-08T10:06:20Z) - Characterizing superradiant dynamics in atomic arrays via a cumulant
expansion approach [0.0]
Ordered atomic arrays with subwavelength lattice spacing emit light collectively.
For fully inverted atomic arrays, this results in an initial burst of radiation and a fast build up of coherences between the atoms at initial times.
We benchmark the cumulant expansion approach and show that it correctly captures the cooperative dynamics resulting in superradiance.
arXiv Detail & Related papers (2022-11-21T22:49:21Z) - Heterogeneous reconstruction of deformable atomic models in Cryo-EM [30.864688165021054]
We describe a heterogeneous reconstruction method based on an atomistic representation whose deformation is reduced to a handful of collective motions.
We show for each distribution that our approach is able to recapitulate the intermediate atomic models with atomic-level accuracy.
arXiv Detail & Related papers (2022-09-29T22:35:35Z) - Entanglement Between Stochastic Atomic Motion and Three-Level Atom [0.0]
entropy and dynamics entanglement between a single time dependent three-level atom interacting with one-mode cavity field are studied.
We show that both of the detuning parameters and atomic motion play important roles in the evolution of von Neumann entropy and atomic populations.
arXiv Detail & Related papers (2022-09-27T21:46:18Z) - GEM-2: Next Generation Molecular Property Prediction Network with
Many-body and Full-range Interaction Modeling [24.94616336296936]
GEM-2 is a novel method for solving the Schr"odinger equation for molecules.
It considers both the long-range and many-body interactions in molecules.
arXiv Detail & Related papers (2022-08-11T15:12:25Z) - Nonadiabatic dissociation of molecular Bose-Einstein condensates:
competition between chemical reactions [0.0]
We provide a framework to solve generic models describing the dissociation of multiple molecular Bose-Einstein condensates in a nonadiabatic regime.
In our framework, a time-dependent non-Hermitian quantum mechanics naturally manifests which can alternatively be realized experimentally in photonic systems.
arXiv Detail & Related papers (2022-02-17T06:40:59Z) - Classical analog of qubit logic based on a magnon Bose-Einstein
condensate [52.77024349608834]
We present a classical version of several quantum bit (qubit) functionalities using a two-component magnon Bose-Einstein condensate.
The macroscopic wavefunctions of these two condensates serve as orthonormal basis states that form a system being a classical counterpart of a single qubit.
arXiv Detail & Related papers (2021-11-12T16:14:46Z) - A fast, high-order numerical method for the simulation of
single-excitation states in quantum optics [0.0]
We reformulate the problem as an integro-differential equation for the atomic degrees of freedom, and describe an efficient solver for the case of a Gaussian atomic density.
We demonstrate the solver on two systems of physical interest: in the first, an initially-excited atom decays into a photon by spontaneous emission, and in the second, a photon pulse is used to excite an atom, which then decays.
arXiv Detail & Related papers (2021-09-14T20:25:32Z) - Collective spontaneous emission of two entangled atoms near an
oscillating mirror [50.591267188664666]
We consider the cooperative spontaneous emission of a system of two identical atoms, interacting with the electromagnetic field in the vacuum state.
Using time-dependent theory, we investigate the spectrum of the radiation emitted by the two-atom system.
We show that it is modulated in time, and that the presence of the oscillating mirror can enhance or inhibit the decay rate.
arXiv Detail & Related papers (2020-10-07T06:48:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.