Mask-guided sample selection for Semi-Supervised Instance Segmentation
- URL: http://arxiv.org/abs/2008.11073v1
- Date: Tue, 25 Aug 2020 14:44:58 GMT
- Title: Mask-guided sample selection for Semi-Supervised Instance Segmentation
- Authors: Miriam Bellver, Amaia Salvador, Jordi Torres, Xavier Giro-i-Nieto
- Abstract summary: We propose a sample selection approach to decide which samples to annotate for semi-supervised instance segmentation.
Our method consists in first predicting pseudo-masks for the unlabeled pool of samples, together with a score predicting the quality of the mask.
We study which samples are better to annotate given the quality score, and show how our approach outperforms a random selection.
- Score: 13.091166009687058
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image segmentation methods are usually trained with pixel-level annotations,
which require significant human effort to collect. The most common solution to
address this constraint is to implement weakly-supervised pipelines trained
with lower forms of supervision, such as bounding boxes or scribbles. Another
option are semi-supervised methods, which leverage a large amount of unlabeled
data and a limited number of strongly-labeled samples. In this second setup,
samples to be strongly-annotated can be selected randomly or with an active
learning mechanism that chooses the ones that will maximize the model
performance. In this work, we propose a sample selection approach to decide
which samples to annotate for semi-supervised instance segmentation. Our method
consists in first predicting pseudo-masks for the unlabeled pool of samples,
together with a score predicting the quality of the mask. This score is an
estimate of the Intersection Over Union (IoU) of the segment with the ground
truth mask. We study which samples are better to annotate given the quality
score, and show how our approach outperforms a random selection, leading to
improved performance for semi-supervised instance segmentation with low
annotation budgets.
Related papers
- Integrated Image-Text Based on Semi-supervised Learning for Small Sample Instance Segmentation [1.3157419797035321]
The article proposes a novel small sample instance segmentation solution from the perspective of maximizing the utilization of existing information.
First, it helps the model fully utilize unlabeled data by learning to generate pseudo labels, increasing the number of available samples.
Second, by integrating the features of text and image, more accurate classification results can be obtained.
arXiv Detail & Related papers (2024-10-21T14:44:08Z) - Bridge the Points: Graph-based Few-shot Segment Anything Semantically [79.1519244940518]
Recent advancements in pre-training techniques have enhanced the capabilities of vision foundation models.
Recent studies extend the SAM to Few-shot Semantic segmentation (FSS)
We propose a simple yet effective approach based on graph analysis.
arXiv Detail & Related papers (2024-10-09T15:02:28Z) - Robust Zero-Shot Crowd Counting and Localization With Adaptive Resolution SAM [55.93697196726016]
We propose a simple yet effective crowd counting method by utilizing the Segment-Everything-Everywhere Model (SEEM)
We show that SEEM's performance in dense crowd scenes is limited, primarily due to the omission of many persons in high-density areas.
Our proposed method achieves the best unsupervised performance in crowd counting, while also being comparable to some supervised methods.
arXiv Detail & Related papers (2024-02-27T13:55:17Z) - Semi-Supervised Learning for hyperspectral images by non parametrically
predicting view assignment [25.198550162904713]
Hyperspectral image (HSI) classification is gaining a lot of momentum in present time because of high inherent spectral information within the images.
Recently, to effectively train the deep learning models with minimal labelled samples, the unlabeled samples are also being leveraged in self-supervised and semi-supervised setting.
In this work, we leverage the idea of semi-supervised learning to assist the discriminative self-supervised pretraining of the models.
arXiv Detail & Related papers (2023-06-19T14:13:56Z) - Which Pixel to Annotate: a Label-Efficient Nuclei Segmentation Framework [70.18084425770091]
Deep neural networks have been widely applied in nuclei instance segmentation of H&E stained pathology images.
It is inefficient and unnecessary to label all pixels for a dataset of nuclei images which usually contain similar and redundant patterns.
We propose a novel full nuclei segmentation framework that chooses only a few image patches to be annotated, augments the training set from the selected samples, and achieves nuclei segmentation in a semi-supervised manner.
arXiv Detail & Related papers (2022-12-20T14:53:26Z) - Box-supervised Instance Segmentation with Level Set Evolution [41.19797478617953]
We propose a box-supervised instance segmentation approach, which integrates the classical level set model with deep neural network delicately.
A simple mask supervised SOLOv2 model is adapted to predict the instance-aware mask map as the level set for each instance.
The experimental results on four challenging benchmarks demonstrate the leading performance of our proposed approach.
arXiv Detail & Related papers (2022-07-19T03:59:44Z) - Saliency Grafting: Innocuous Attribution-Guided Mixup with Calibrated
Label Mixing [104.630875328668]
Mixup scheme suggests mixing a pair of samples to create an augmented training sample.
We present a novel, yet simple Mixup-variant that captures the best of both worlds.
arXiv Detail & Related papers (2021-12-16T11:27:48Z) - A Three-Stage Self-Training Framework for Semi-Supervised Semantic
Segmentation [0.9786690381850356]
We propose a holistic solution framed as a three-stage self-training framework for semantic segmentation.
The key idea of our technique is the extraction of the pseudo-masks statistical information.
We then decrease the uncertainty of the pseudo-masks using a multi-task model that enforces consistency.
arXiv Detail & Related papers (2020-12-01T21:00:27Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
We propose to leverage both labeled and unlabeled data for instance segmentation with improved accuracy by knowledge distillation.
We propose a novel Mask-guided Mean Teacher framework with Perturbation-sensitive Sample Mining.
Experiments show that the proposed method improves the performance significantly compared with the supervised method learned from labeled data only.
arXiv Detail & Related papers (2020-07-21T13:27:09Z) - UniT: Unified Knowledge Transfer for Any-shot Object Detection and
Segmentation [52.487469544343305]
Methods for object detection and segmentation rely on large scale instance-level annotations for training.
We propose an intuitive and unified semi-supervised model that is applicable to a range of supervision.
arXiv Detail & Related papers (2020-06-12T22:45:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.