Quantum Nondemolition Photon Counting With a Hybrid Electromechanical
Probe
- URL: http://arxiv.org/abs/2008.11130v2
- Date: Sat, 14 Nov 2020 15:37:23 GMT
- Title: Quantum Nondemolition Photon Counting With a Hybrid Electromechanical
Probe
- Authors: Junjie Liu and Hsing-Ta Chen and Dvira Segal
- Abstract summary: Quantum nondemolition (QND) measurements of photons is a much pursued endeavor in the field of quantum optics.
We propose a novel hybrid optoelectromechanical platform that integrates a cavity system with a hybrid electromechanical probe for QND photon counting.
- Score: 5.258079114494524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum nondemolition (QND) measurements of photons is a much pursued
endeavor in the field of quantum optics and quantum information processing.
Here we propose a novel hybrid optoelectromechanical platform that integrates a
cavity system with a hybrid electromechanical probe for QND photon counting.
Building upon a mechanical-mode-mediated nonperturbative electro-optical
dispersive coupling, our protocol performs the QND photon counting measurement
by means of the current-voltage characteristics of the probe. In particular, we
show that the peak voltage shift of the differential conductance is linearly
dependent on the photon occupation number, thus providing a sensitive measure
of the photon number, especially in the strong optomechanical coupling regime.
Given that our proposed hybrid system is compatible with state-of-the-art
experimental techniques, we discuss its implementations and anticipate
applications in quantum optics and polariton physics.
Related papers
- Simulating polaritonic ground states on noisy quantum devices [0.0]
We introduce a general framework for simulating electron-photon coupled systems on small, noisy quantum devices.
To achieve chemical accuracy, we exploit various symmetries in qubit reduction methods.
We measure two properties: ground-state energy, fundamentally relevant to chemical reactivity, and photon number.
arXiv Detail & Related papers (2023-10-03T14:45:54Z) - All-Optical Spin Initialization via a Cavity Broadened Optical
Transition in On-Chip Hybrid Quantum Photonics [33.607979748917465]
Hybrid quantum photonic systems connect classical photonics to the quantum world and promise to deliver efficient light-matter quantum interfaces.
We demonstrate all-optical readout of the electronic spin of a negatively-charged silicon-vacancy center in a nanodiamond coupled to a silicon nitride photonic crystal cavity.
Our results mark an important step towards the realization of a hybrid spin-photon interface based on silicon nitride photonics and the silicon-vacancy center's electron spin in nanodiamonds with potential use for quantum networks, quantum communication and distributed quantum computation.
arXiv Detail & Related papers (2023-08-29T18:03:11Z) - Beyond-adiabatic Quantum Admittance of a Semiconductor Quantum Dot at High Frequencies: Rethinking Reflectometry as Polaron Dynamics [0.0]
We develop a self-consistent quantum master equation formalism to obtain the admittance of a quantum dot tunnel-coupled to a charge reservoir.
We describe two new photon-mediated regimes: Floquet broadening, determined by the dressing of the QD states, and broadening determined by photon loss in the system.
arXiv Detail & Related papers (2023-07-31T14:46:43Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - Jaynes-Cummings interaction between low energy free-electrons and cavity
photons [0.571097144710995]
We propose a new approach to realize the Jaynes-Cummings Hamiltonian using low energy free-electrons coupled to dielectric microcavities.
Our approach utilizes quantum recoil, which causes a large detuning that inhibits the emission of multiple consecutive photons.
We show that this approach can be used for generation of single photons with unity efficiency and high fidelity.
arXiv Detail & Related papers (2023-02-03T07:06:51Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Measurements of a quantum bulk acoustic resonator using a
superconducting qubit [0.0]
Phonons hold promise for quantum-focused applications as diverse as sensing, information processing, and communication.
We describe a piezoelectric quantum bulk acoustic resonator (QBAR) with a 4.88 GHz resonant frequency.
We couple this QBAR resonator to a superconducting qubit on a separate die and demonstrate quantum control of the mechanics in the coupled system.
arXiv Detail & Related papers (2020-12-08T17:36:33Z) - Topological photon pairs in a superconducting quantum metamaterial [44.62475518267084]
We use an array of superconducting qubits to engineer a nontrivial quantum metamaterial.
By performing microwave spectroscopy of the fabricated array, we experimentally observe the spectrum of elementary excitations.
We find not only the single-photon topological states but also the bands of exotic bound photon pairs arising due to the inherent anharmonicity of qubits.
arXiv Detail & Related papers (2020-06-23T07:04:27Z) - Coupling colloidal quantum dots to gap waveguides [62.997667081978825]
coupling between single photon emitters and integrated photonic circuits is an emerging topic relevant for quantum information science and other nanophotonic applications.
We investigate the coupling between a hybrid system of colloidal quantum dots and propagating gap modes of a silicon nitride waveguide system.
arXiv Detail & Related papers (2020-03-30T21:18:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.