論文の概要: An Adversarial Attack Defending System for Securing In-Vehicle Networks
- arxiv url: http://arxiv.org/abs/2008.11278v2
- Date: Sat, 29 Aug 2020 17:19:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-25 04:36:54.236774
- Title: An Adversarial Attack Defending System for Securing In-Vehicle Networks
- Title(参考訳): 車両内ネットワーク確保のための敵攻撃防御システム
- Authors: Yi Li, Jing Lin, and Kaiqi Xiong
- Abstract要約: 本稿では,車載ネットワークを確保するためのアタック防御システム (AADS) を提案する。
実験の結果,LSTMに基づく検出モデルに対して,98%以上の成功率で容易に攻撃できることが示された。
- 参考スコア(独自算出の注目度): 6.288673794889309
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In a modern vehicle, there are over seventy Electronics Control Units (ECUs).
For an in-vehicle network, ECUs communicate with each other by following a
standard communication protocol, such as Controller Area Network (CAN).
However, an attacker can easily access the in-vehicle network to compromise
ECUs through a WLAN or Bluetooth. Though there are various deep learning (DL)
methods suggested for securing in-vehicle networks, recent studies on
adversarial examples have shown that attackers can easily fool DL models. In
this research, we further explore adversarial examples in an in-vehicle
network. We first discover and implement two adversarial attack models that are
harmful to a Long Short Term Memory (LSTM)-based detection model used in the
in-vehicle network. Then, we propose an Adversarial Attack Defending System
(AADS) for securing an in-vehicle network. Specifically, we focus on
brake-related ECUs in an in-vehicle network. Our experimental results
demonstrate that adversaries can easily attack the LSTM-based detection model
with a success rate of over 98%, and the proposed AADS achieves over 99%
accuracy for detecting adversarial attacks.
- Abstract(参考訳): 現代の車両では、70以上の電子制御ユニット(ECU)がある。
車両内ネットワークでは、ECUはコントローラエリアネットワーク(CAN)などの標準通信プロトコルに従って通信を行う。
しかし、攻撃者は車載ネットワークに容易にアクセスして、WLANやBluetoothを介してECUに侵入することができる。
車両内ネットワークの確保には様々な深層学習(DL)手法が提案されているが、近年の敵の事例では、攻撃者が容易にDLモデルを騙せることが示されている。
本研究では,車載ネットワークにおける逆例をさらに探求する。
まず,車載ネットワークで使用されるlong short term memory(lstm)ベースの検出モデルに有害な2つの敵攻撃モデルを発見し,実装する。
そこで本研究では,車載ネットワークを確保するためのアタック防御システム(AADS)を提案する。
具体的には車内ネットワークにおけるブレーキ関連ECUに着目した。
実験の結果,LSTMに基づく検出モデルでは98%以上の精度で容易に攻撃が可能であり,AADSは99%以上の精度で敵の攻撃を検出できることがわかった。
関連論文リスト
- A Robust Multi-Stage Intrusion Detection System for In-Vehicle Network Security using Hierarchical Federated Learning [0.0]
車両内侵入検知システム(IDS)は、目に見える攻撃を検出し、新しい目に見えない攻撃に対する堅牢な防御を提供する必要がある。
これまでの作業は、CAN ID機能のみに依存していたり、手動で機能抽出する従来の機械学習(ML)アプローチを使用していました。
本稿では,これらの制約に対処するために,最先端,斬新,軽量,車内,IDS平均化,深層学習(DL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-08-15T21:51:56Z) - Detecting stealthy cyberattacks on adaptive cruise control vehicles: A
machine learning approach [5.036807309572884]
運転行動がわずかに変化しただけで、より汚い攻撃は、ネットワーク全体の混雑、燃料消費、さらにはクラッシュリスクさえも、容易に検出されずに増加させる可能性がある。
本稿では,車両制御コマンドの不正な操作,センサ計測に対する偽データ注入攻撃,DoS攻撃の3種類のサイバー攻撃に対するトラフィックモデルフレームワークを提案する。
車両軌跡データを用いた攻撃をリアルタイムに識別するために,GANに基づく新しい生成逆数ネットワーク(generative adversarial network, GAN)を用いた異常検出モデルを提案する。
論文 参考訳(メタデータ) (2023-10-26T01:22:10Z) - When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
我々はランダムフォレストとリカレントニューラルネットワークアーキテクチャに基づく2つの軽量ドライバ認証システムを開発した。
我々は,SMARTCANとGANCANという2つの新しいエスケープアタックを開発することで,これらのシステムに対する攻撃を最初に提案する。
コントリビューションを通じて、これらのシステムを安全に採用する実践者を支援し、車の盗難を軽減し、ドライバーのセキュリティを高める。
論文 参考訳(メタデータ) (2023-06-09T14:33:26Z) - X-CANIDS: Signal-Aware Explainable Intrusion Detection System for Controller Area Network-Based In-Vehicle Network [6.68111081144141]
X-CANIDSは、CANデータベースを使用して、CANメッセージのペイロードを人間の理解可能な信号に分解する。
X-CANIDSはトレーニングフェーズにラベル付きデータセットを必要としないため、ゼロデイ攻撃を検出することができる。
論文 参考訳(メタデータ) (2023-03-22T03:11:02Z) - Reinforcement Learning based Cyberattack Model for Adaptive Traffic
Signal Controller in Connected Transportation Systems [61.39400591328625]
接続輸送システムにおいて、適応交通信号制御装置(ATSC)は、車両から受信したリアルタイム車両軌跡データを利用して、グリーンタイムを規制する。
この無線接続されたATSCはサイバー攻撃面を増やし、その脆弱性を様々なサイバー攻撃モードに拡大する。
そのようなモードの1つは、攻撃者がネットワーク内で偽の車両を作成する「シビル」攻撃である。
RLエージェントは、シビル車噴射の最適速度を学習し、アプローチの混雑を生じさせるように訓練される
論文 参考訳(メタデータ) (2022-10-31T20:12:17Z) - CAN-BERT do it? Controller Area Network Intrusion Detection System based
on BERT Language Model [2.415997479508991]
深層学習に基づくネットワーク侵入検知システムであるCAN-BERTを提案する。
BERTモデルは,CANバス内の調停識別子(ID)のシーケンスを異常検出のために学習可能であることを示す。
また、車内侵入を0.8msから3msのCANIDシーケンス長でリアルタイムに識別できるだけでなく、F1スコアの0.81から0.99で様々なサイバー攻撃を検出できる。
論文 参考訳(メタデータ) (2022-10-17T21:21:37Z) - Anomaly Detection in Intra-Vehicle Networks [0.0]
現代の車両は車内ネットワークや外部ネットワークを含む様々なネットワークに接続されている。
既存のプロトコルの抜け穴によって、車両ネットワークのサイバー攻撃は激増している。
本稿では,CANバスプロトコルのセキュリティ問題について議論し,既知の攻撃を検出する侵入検知システム(IDS)を提案する。
論文 参考訳(メタデータ) (2022-05-07T03:38:26Z) - CAN-LOC: Spoofing Detection and Physical Intrusion Localization on an
In-Vehicle CAN Bus Based on Deep Features of Voltage Signals [48.813942331065206]
車両内ネットワークのためのセキュリティ強化システムを提案する。
提案システムは,CANバスで測定した電圧信号から抽出した深い特徴を処理する2つの機構を含む。
論文 参考訳(メタデータ) (2021-06-15T06:12:33Z) - TANTRA: Timing-Based Adversarial Network Traffic Reshaping Attack [46.79557381882643]
本稿では,TANTRA(Adversarial Network Traffic Reshaping Attack)を提案する。
我々の回避攻撃は、ターゲットネットワークの良性パケット間の時間差を学習するために訓練された長い短期記憶(LSTM)ディープニューラルネットワーク(DNN)を利用する。
TANTRAは、ネットワーク侵入検出システム回避の平均成功率99.99%を達成します。
論文 参考訳(メタデータ) (2021-03-10T19:03:38Z) - Adversarial defense for automatic speaker verification by cascaded
self-supervised learning models [101.42920161993455]
ますます悪意のある攻撃者は、自動話者検証(ASV)システムで敵攻撃を仕掛けようとする。
本稿では,逐次的自己教師付き学習モデルに基づく標準的かつ攻撃非依存な手法を提案する。
実験により, 本手法は効果的な防御性能を実現し, 敵攻撃に対抗できることを示した。
論文 参考訳(メタデータ) (2021-02-14T01:56:43Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
敵対的な例は、ディープニューラルネットワーク(DNN)ベースの視覚システムにおいて破滅的な誤りを引き起こす可能性がある。
本稿では,入力空間における自己教師型対向学習機構を提案する。
これは、反逆攻撃に対する強力な堅牢性を提供する。
論文 参考訳(メタデータ) (2020-06-08T20:42:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。