論文の概要: CAN-BERT do it? Controller Area Network Intrusion Detection System based
on BERT Language Model
- arxiv url: http://arxiv.org/abs/2210.09439v1
- Date: Mon, 17 Oct 2022 21:21:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-19 16:18:57.095229
- Title: CAN-BERT do it? Controller Area Network Intrusion Detection System based
on BERT Language Model
- Title(参考訳): バートはできるのか?
BERT言語モデルに基づく制御領域ネットワーク侵入検知システム
- Authors: Natasha Alkhatib, Maria Mushtaq, Hadi Ghauch, Jean-Luc Danger
- Abstract要約: 深層学習に基づくネットワーク侵入検知システムであるCAN-BERTを提案する。
BERTモデルは,CANバス内の調停識別子(ID)のシーケンスを異常検出のために学習可能であることを示す。
また、車内侵入を0.8msから3msのCANIDシーケンス長でリアルタイムに識別できるだけでなく、F1スコアの0.81から0.99で様々なサイバー攻撃を検出できる。
- 参考スコア(独自算出の注目度): 2.415997479508991
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Due to the rising number of sophisticated customer functionalities,
electronic control units (ECUs) are increasingly integrated into modern
automotive systems. However, the high connectivity between the in-vehicle and
the external networks paves the way for hackers who could exploit in-vehicle
network protocols' vulnerabilities. Among these protocols, the Controller Area
Network (CAN), known as the most widely used in-vehicle networking technology,
lacks encryption and authentication mechanisms, making the communications
delivered by distributed ECUs insecure. Inspired by the outstanding performance
of bidirectional encoder representations from transformers (BERT) for improving
many natural language processing tasks, we propose in this paper ``CAN-BERT", a
deep learning based network intrusion detection system, to detect cyber attacks
on CAN bus protocol. We show that the BERT model can learn the sequence of
arbitration identifiers (IDs) in the CAN bus for anomaly detection using the
``masked language model" unsupervised training objective. The experimental
results on the ``Car Hacking: Attack \& Defense Challenge 2020" dataset show
that ``CAN-BERT" outperforms state-of-the-art approaches. In addition to being
able to identify in-vehicle intrusions in real-time within 0.8 ms to 3 ms w.r.t
CAN ID sequence length, it can also detect a wide variety of cyberattacks with
an F1-score of between 0.81 and 0.99.
- Abstract(参考訳): 高度な顧客機能の増加により、電子制御ユニット(ECU)は現代の自動車システムに統合されつつある。
しかし、車載ネットワークと外部ネットワークとの間の高い接続性は、車載ネットワークプロトコルの脆弱性を悪用できるハッカーの道を開く。
これらのプロトコルの中で、最も広く使われている車載ネットワーク技術として知られるController Area Network(CAN)は、暗号化と認証機構が欠如しており、分散ECUによる通信の安全性が低い。
本稿では,多くの自然言語処理タスクを改善するための変換器(BERT)による双方向エンコーダ表現の卓越した性能に着想を得て,CANバスプロトコルに対するサイバー攻撃を検出する深層学習ベースのネットワーク侵入検知システムである「CAN-BERT」を提案する。
Car Hacking: Attack \& Defense Challenge 2020"データセットの実験結果は、‘CAN-BERT’が最先端のアプローチを上回っていることを示している。
また、車内侵入を0.8msから3msのCANIDシーケンス長でリアルタイムに識別できるだけでなく、F1スコアの0.81から0.99で様々なサイバー攻撃を検出することもできる。
関連論文リスト
- A Robust Multi-Stage Intrusion Detection System for In-Vehicle Network Security using Hierarchical Federated Learning [0.0]
車両内侵入検知システム(IDS)は、目に見える攻撃を検出し、新しい目に見えない攻撃に対する堅牢な防御を提供する必要がある。
これまでの作業は、CAN ID機能のみに依存していたり、手動で機能抽出する従来の機械学習(ML)アプローチを使用していました。
本稿では,これらの制約に対処するために,最先端,斬新,軽量,車内,IDS平均化,深層学習(DL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-08-15T21:51:56Z) - SISSA: Real-time Monitoring of Hardware Functional Safety and
Cybersecurity with In-vehicle SOME/IP Ethernet Traffic [49.549771439609046]
本稿では,車内機能安全とサイバーセキュリティをモデル化・解析するためのSOME/IP通信トラフィックベースアプローチであるSISSAを提案する。
具体的には、SISSAはWeibullディストリビューションでハードウェア障害をモデル化し、SOME/IP通信に対する5つの潜在的な攻撃に対処する。
広範囲な実験結果から,SISSAの有効性と有効性が確認された。
論文 参考訳(メタデータ) (2024-02-21T03:31:40Z) - Exploring Highly Quantised Neural Networks for Intrusion Detection in
Automotive CAN [13.581341206178525]
機械学習に基づく侵入検出モデルは、標的となる攻撃ベクトルを複数検出することに成功した。
本稿では,多クラス分類モデルとしてのカスタム量子化文学(CQMLP)について述べる。
IDSとして統合された2ビットCQMLPモデルでは、悪意のある攻撃メッセージを99.9%の精度で検出できることが示されている。
論文 参考訳(メタデータ) (2024-01-19T21:11:02Z) - A Lightweight Multi-Attack CAN Intrusion Detection System on Hybrid
FPGAs [13.581341206178525]
コントローラエリアネットワーク(CAN)における複数攻撃ベクトルの検出において、侵入検知と緩和アプローチが有望な結果を示している。
本稿では,Zynq Ultrascale+ (XCZU3EG) FPGA上にXilinxのDeep Learning Processing Unit IPを用いて,軽量なマルチアタック量子機械学習モデルを提案する。
このモデルは、99%以上の精度でサービス拒否とファジッシング攻撃を検知し、その偽陽性率は0.07%であり、これは文学における最先端技術に匹敵するものである。
論文 参考訳(メタデータ) (2024-01-19T13:39:05Z) - When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
我々はランダムフォレストとリカレントニューラルネットワークアーキテクチャに基づく2つの軽量ドライバ認証システムを開発した。
我々は,SMARTCANとGANCANという2つの新しいエスケープアタックを開発することで,これらのシステムに対する攻撃を最初に提案する。
コントリビューションを通じて、これらのシステムを安全に採用する実践者を支援し、車の盗難を軽減し、ドライバーのセキュリティを高める。
論文 参考訳(メタデータ) (2023-06-09T14:33:26Z) - X-CANIDS: Signal-Aware Explainable Intrusion Detection System for Controller Area Network-Based In-Vehicle Network [6.68111081144141]
X-CANIDSは、CANデータベースを使用して、CANメッセージのペイロードを人間の理解可能な信号に分解する。
X-CANIDSはトレーニングフェーズにラベル付きデータセットを必要としないため、ゼロデイ攻撃を検出することができる。
論文 参考訳(メタデータ) (2023-03-22T03:11:02Z) - Anomaly Detection in Intra-Vehicle Networks [0.0]
現代の車両は車内ネットワークや外部ネットワークを含む様々なネットワークに接続されている。
既存のプロトコルの抜け穴によって、車両ネットワークのサイバー攻撃は激増している。
本稿では,CANバスプロトコルのセキュリティ問題について議論し,既知の攻撃を検出する侵入検知システム(IDS)を提案する。
論文 参考訳(メタデータ) (2022-05-07T03:38:26Z) - Neurosymbolic hybrid approach to driver collision warning [64.02492460600905]
自律運転システムには2つの主要なアルゴリズムアプローチがある。
ディープラーニングだけでは、多くの分野で最先端の結果が得られています。
しかし、ディープラーニングモデルが機能しない場合、デバッグが非常に難しい場合もあります。
論文 参考訳(メタデータ) (2022-03-28T20:29:50Z) - CAN-LOC: Spoofing Detection and Physical Intrusion Localization on an
In-Vehicle CAN Bus Based on Deep Features of Voltage Signals [48.813942331065206]
車両内ネットワークのためのセキュリティ強化システムを提案する。
提案システムは,CANバスで測定した電圧信号から抽出した深い特徴を処理する2つの機構を含む。
論文 参考訳(メタデータ) (2021-06-15T06:12:33Z) - D-Unet: A Dual-encoder U-Net for Image Splicing Forgery Detection and
Localization [108.8592577019391]
画像スプライシング偽造検出は、画像指紋によって改ざんされた領域と非改ざんされた領域を区別するグローバルバイナリ分類タスクである。
画像スプライシングフォージェリ検出のためのデュアルエンコーダU-Net(D-Unet)という,固定されていないエンコーダと固定エンコーダを用いた新しいネットワークを提案する。
D-Unetと最先端技術の比較実験において、D-Unetは画像レベルおよび画素レベルの検出において他の手法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-03T10:54:02Z) - Cassandra: Detecting Trojaned Networks from Adversarial Perturbations [92.43879594465422]
多くの場合、事前トレーニングされたモデルは、トロイの木馬の振る舞いをモデルに挿入するためにトレーニングパイプラインを中断したかもしれないベンダーから派生している。
本稿では,事前学習したモデルがトロイの木馬か良馬かを検証する手法を提案する。
本手法は,ニューラルネットワークの指紋を,ネットワーク勾配から学習した逆方向の摂動の形でキャプチャする。
論文 参考訳(メタデータ) (2020-07-28T19:00:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。