Robust Reinforcement Learning: A Case Study in Linear Quadratic
Regulation
- URL: http://arxiv.org/abs/2008.11592v3
- Date: Mon, 15 Mar 2021 04:57:01 GMT
- Title: Robust Reinforcement Learning: A Case Study in Linear Quadratic
Regulation
- Authors: Bo Pang and Zhong-Ping Jiang
- Abstract summary: This paper studies the robustness of reinforcement learning algorithms to errors in the learning process.
It is shown that policy iteration for LQR is inherently robust to small errors in the learning process.
- Score: 23.76925146112261
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper studies the robustness of reinforcement learning algorithms to
errors in the learning process. Specifically, we revisit the benchmark problem
of discrete-time linear quadratic regulation (LQR) and study the long-standing
open question: Under what conditions is the policy iteration method robustly
stable from a dynamical systems perspective? Using advanced stability results
in control theory, it is shown that policy iteration for LQR is inherently
robust to small errors in the learning process and enjoys small-disturbance
input-to-state stability: whenever the error in each iteration is bounded and
small, the solutions of the policy iteration algorithm are also bounded, and,
moreover, enter and stay in a small neighbourhood of the optimal LQR solution.
As an application, a novel off-policy optimistic least-squares policy iteration
for the LQR problem is proposed, when the system dynamics are subjected to
additive stochastic disturbances. The proposed new results in robust
reinforcement learning are validated by a numerical example.
Related papers
- Sublinear Regret for a Class of Continuous-Time Linear--Quadratic Reinforcement Learning Problems [10.404992912881601]
We study reinforcement learning for a class of continuous-time linear-quadratic (LQ) control problems for diffusions.
We apply a model-free approach that relies neither on knowledge of model parameters nor on their estimations, and devise an actor-critic algorithm to learn the optimal policy parameter directly.
arXiv Detail & Related papers (2024-07-24T12:26:21Z) - Projected Off-Policy Q-Learning (POP-QL) for Stabilizing Offline
Reinforcement Learning [57.83919813698673]
Projected Off-Policy Q-Learning (POP-QL) is a novel actor-critic algorithm that simultaneously reweights off-policy samples and constrains the policy to prevent divergence and reduce value-approximation error.
In our experiments, POP-QL not only shows competitive performance on standard benchmarks, but also out-performs competing methods in tasks where the data-collection policy is significantly sub-optimal.
arXiv Detail & Related papers (2023-11-25T00:30:58Z) - Regret Analysis of Certainty Equivalence Policies in Continuous-Time
Linear-Quadratic Systems [0.0]
This work studies theoretical performance guarantees of a ubiquitous reinforcement learning policy for controlling the canonical model of linear-quadratic system.
We establish square-root of time regret bounds, indicating that randomized certainty equivalent policy learns optimal control actions fast from a single state trajectory.
arXiv Detail & Related papers (2022-06-09T11:47:36Z) - Instance-Dependent Confidence and Early Stopping for Reinforcement
Learning [99.57168572237421]
Various algorithms for reinforcement learning (RL) exhibit dramatic variation in their convergence rates as a function of problem structure.
This research provides guarantees that explain textitex post the performance differences observed.
A natural next step is to convert these theoretical guarantees into guidelines that are useful in practice.
arXiv Detail & Related papers (2022-01-21T04:25:35Z) - Solving Multistage Stochastic Linear Programming via Regularized Linear
Decision Rules: An Application to Hydrothermal Dispatch Planning [77.34726150561087]
We propose a novel regularization scheme for linear decision rules (LDR) based on the AdaSO (adaptive least absolute shrinkage and selection operator)
Experiments show that the overfit threat is non-negligible when using the classical non-regularized LDR to solve MSLP.
For the LHDP problem, our analysis highlights the following benefits of the proposed framework in comparison to the non-regularized benchmark.
arXiv Detail & Related papers (2021-10-07T02:36:14Z) - Reinforcement Learning Policies in Continuous-Time Linear Systems [0.0]
We present online policies that learn optimal actions fast by carefully randomizing the parameter estimates.
We prove sharp stability results for inexact system dynamics and tightly specify the infinitesimal regret caused by sub-optimal actions.
Our analysis sheds light on fundamental challenges in continuous-time reinforcement learning and suggests a useful cornerstone for similar problems.
arXiv Detail & Related papers (2021-09-16T00:08:50Z) - Derivative-Free Policy Optimization for Risk-Sensitive and Robust
Control Design: Implicit Regularization and Sample Complexity [15.940861063732608]
Direct policy search serves as one of the workhorses in modern reinforcement learning (RL)
We investigate the convergence theory of policy robustness (PG) methods for the linear risk-sensitive and robust controller.
One feature of our algorithms is that during the learning phase, a certain level complexity/risk-sensitivity controller is preserved.
arXiv Detail & Related papers (2021-01-04T16:00:46Z) - Logistic Q-Learning [87.00813469969167]
We propose a new reinforcement learning algorithm derived from a regularized linear-programming formulation of optimal control in MDPs.
The main feature of our algorithm is a convex loss function for policy evaluation that serves as a theoretically sound alternative to the widely used squared Bellman error.
arXiv Detail & Related papers (2020-10-21T17:14:31Z) - Structured Policy Iteration for Linear Quadratic Regulator [40.52288246664592]
We introduce the textitStructured Policy Iteration (S-PI) for LQR, a method capable of deriving a structured linear policy.
Such a structured policy with (block) sparsity or low-rank can have significant advantages over the standard LQR policy.
In both the known-model and model-free setting, we prove convergence analysis under the proper choice of parameters.
arXiv Detail & Related papers (2020-07-13T06:03:15Z) - Robust Reinforcement Learning with Wasserstein Constraint [49.86490922809473]
We show the existence of optimal robust policies, provide a sensitivity analysis for the perturbations, and then design a novel robust learning algorithm.
The effectiveness of the proposed algorithm is verified in the Cart-Pole environment.
arXiv Detail & Related papers (2020-06-01T13:48:59Z) - Deep Reinforcement Learning with Robust and Smooth Policy [90.78795857181727]
We propose to learn a smooth policy that behaves smoothly with respect to states.
We develop a new framework -- textbfSmooth textbfRegularized textbfReinforcement textbfLearning ($textbfSR2textbfL$), where the policy is trained with smoothness-inducing regularization.
Such regularization effectively constrains the search space, and enforces smoothness in the learned policy.
arXiv Detail & Related papers (2020-03-21T00:10:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.