Hybrid quantum-classical optimization for financial index tracking
- URL: http://arxiv.org/abs/2008.12050v2
- Date: Thu, 21 Oct 2021 15:23:37 GMT
- Title: Hybrid quantum-classical optimization for financial index tracking
- Authors: Samuel Fern\'andez-Lorenzo, Diego Porras, Juan Jos\'e Garc\'ia-Ripoll
- Abstract summary: Tracking a financial index boils down to replicating its trajectory of returns for a well-defined time span by investing in a subset of the securities included in the benchmark.
Picking the optimal combination of assets becomes a challenging weighted-hard problem even for moderately large indices consisting of dozens or hundreds of assets.
We introduce a pruning algorithm to find weighted combinations of assets subject to cardinality constraints.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tracking a financial index boils down to replicating its trajectory of
returns for a well-defined time span by investing in a weighted subset of the
securities included in the benchmark. Picking the optimal combination of assets
becomes a challenging NP-hard problem even for moderately large indices
consisting of dozens or hundreds of assets, thereby requiring heuristic methods
to find approximate solutions. Hybrid quantum-classical optimization with
variational gate-based quantum circuits arises as a plausible method to improve
performance of current schemes. In this work we introduce a heuristic pruning
algorithm to find weighted combinations of assets subject to cardinality
constraints. We further consider different strategies to respect such
constraints and compare the performance of relevant quantum ans\"{a}tze and
classical optimizers through numerical simulations.
Related papers
- Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Comparative analysis of diverse methodologies for portfolio optimization leveraging quantum annealing techniques [3.296670045513668]
As the number of involved assets and constraints increases, the portfolio optimization problem can become increasingly difficult to solve.
Quantum annealing algorithm holds promise for solving complex portfolio optimization problems in the NISQ era.
arXiv Detail & Related papers (2024-03-05T02:21:54Z) - A Novel Knapsack-based Financial Portfolio Optimization using Quantum Approximate Optimization Algorithm [2.6603181502541986]
We propose a method that uses the quantum computing capabilities of the quantum walk mixer with the quantum approximate optimization algorithm (QAOA) to address the challenges presented by the NP-hard problem.
Our study successfully achieves the approximate ratio of the portfolio optimization technique using a circuit layer of p >= 3, compared to the classical best-known solution of the knapsack problem.
arXiv Detail & Related papers (2024-02-11T08:20:26Z) - Benchmarking Metaheuristic-Integrated QAOA against Quantum Annealing [0.0]
The study provides insights into the strengths and limitations of both Quantum Annealing and metaheuristic-integrated QAOA across different problem domains.
The findings suggest that the hybrid approach can leverage classical optimization strategies to enhance the solution quality and convergence speed of QAOA.
arXiv Detail & Related papers (2023-09-28T18:55:22Z) - Evaluating the Convergence of Tabu Enhanced Hybrid Quantum Optimization [58.720142291102135]
We introduce the Tabu Enhanced Hybrid Quantum Optimization metaheuristic approach useful for optimization problem solving on a quantum hardware.
We address the theoretical convergence of the proposed scheme from the viewpoint of the collisions in the object which stores the tabu states, based on the Ising model.
arXiv Detail & Related papers (2022-09-05T07:23:03Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Dynamic Asset Allocation with Expected Shortfall via Quantum Annealing [0.0]
We propose a hybrid quantum-classical algorithm to solve a dynamic asset allocation problem.
We compare the results from D-Wave's 2000Q and Advantage quantum annealers using real-world financial data.
Experiments on assets with higher correlations tend to perform better, which may help to design practical quantum applications in the near term.
arXiv Detail & Related papers (2021-12-06T17:39:43Z) - Lyapunov control-inspired strategies for quantum combinatorial
optimization [0.0]
We provide an expanded description of Lyapunov control-inspired strategies for quantum optimization.
Instead, these strategies utilize feedback from qubit measurements to assign values to the quantum circuit parameters in a deterministic manner.
arXiv Detail & Related papers (2021-08-12T19:47:59Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.