Lyapunov control-inspired strategies for quantum combinatorial
optimization
- URL: http://arxiv.org/abs/2108.05945v2
- Date: Wed, 4 Jan 2023 17:13:12 GMT
- Title: Lyapunov control-inspired strategies for quantum combinatorial
optimization
- Authors: Alicia B. Magann, Kenneth M. Rudinger, Matthew D. Grace, Mohan Sarovar
- Abstract summary: We provide an expanded description of Lyapunov control-inspired strategies for quantum optimization.
Instead, these strategies utilize feedback from qubit measurements to assign values to the quantum circuit parameters in a deterministic manner.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The prospect of using quantum computers to solve combinatorial optimization
problems via the quantum approximate optimization algorithm (QAOA) has
attracted considerable interest in recent years. However, a key limitation
associated with QAOA is the need to classically optimize over a set of quantum
circuit parameters. This classical optimization can have significant associated
costs and challenges. Here, we provide an expanded description of Lyapunov
control-inspired strategies for quantum optimization, as presented in [Magann
et al., Phys. Rev. Lett. 129, 250502 (2022)], that do not require any classical
optimization effort. Instead, these strategies utilize feedback from qubit
measurements to assign values to the quantum circuit parameters in a
deterministic manner, such that the combinatorial optimization problem solution
improves monotonically with the quantum circuit depth. Numerical analyses are
presented that investigate the utility of these strategies towards MaxCut on
weighted and unweighted 3-regular graphs, both in ideal implementations and
also in the presence of measurement noise. We also discuss how how these
strategies compare with QAOA, how they may be used to seed QAOA optimizations
in order to improve performance for near-term applications, and explore
connections to quantum annealing.
Related papers
- A coherent approach to quantum-classical optimization [0.0]
Hybrid quantum-classical optimization techniques have been shown to allow for the reduction of quantum computational resources.
We identify the coherence entropy as a crucial metric in determining the suitability of quantum states.
We propose a quantum-classical optimization protocol that significantly improves on previous approaches for such tasks.
arXiv Detail & Related papers (2024-09-20T22:22:53Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Measurement-Based Quantum Approximate Optimization [0.24861619769660645]
We focus on measurement-based quantum computing protocols for approximate optimization.
We derive measurement patterns for applying QAOA to the broad and important class of QUBO problems.
We discuss the resource requirements and tradeoffs of our approach to that of more traditional quantum circuits.
arXiv Detail & Related papers (2024-03-18T06:59:23Z) - Randomized Benchmarking of Local Zeroth-Order Optimizers for Variational
Quantum Systems [65.268245109828]
We compare the performance of classicals across a series of partially-randomized tasks.
We focus on local zeroth-orders due to their generally favorable performance and query-efficiency on quantum systems.
arXiv Detail & Related papers (2023-10-14T02:13:26Z) - Benchmarking Metaheuristic-Integrated QAOA against Quantum Annealing [0.0]
The study provides insights into the strengths and limitations of both Quantum Annealing and metaheuristic-integrated QAOA across different problem domains.
The findings suggest that the hybrid approach can leverage classical optimization strategies to enhance the solution quality and convergence speed of QAOA.
arXiv Detail & Related papers (2023-09-28T18:55:22Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
The Quantum Approximate Optimization Algorithm (QAOA) is a highly promising variational quantum algorithm that aims to solve intractable optimization problems.
This comprehensive review offers an overview of the current state of QAOA, encompassing its performance analysis in diverse scenarios.
We conduct a comparative study of selected QAOA extensions and variants, while exploring future prospects and directions for the algorithm.
arXiv Detail & Related papers (2023-06-15T15:28:12Z) - Bayesian Optimization for QAOA [0.0]
We present a Bayesian optimization procedure to optimise a quantum circuit.
We show that our approach allows for a significant reduction in the number of calls to the quantum circuit.
Our results suggest that the method proposed here is a promising framework to leverage the hybrid nature of QAOA on the noisy intermediate-scale quantum devices.
arXiv Detail & Related papers (2022-09-08T13:59:47Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Feedback-based quantum optimization [0.0]
We introduce a feedback-based strategy for quantum optimization, where the results of qubit measurements are used to constructively assign values to quantum circuit parameters.
We show that this procedure results in an estimate of the optimization problem solution that improves monotonically with the depth of the quantum circuit.
arXiv Detail & Related papers (2021-03-15T18:01:03Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.