Theoretical formulations on thermodynamics of quantum impurity systems
- URL: http://arxiv.org/abs/2008.12301v1
- Date: Thu, 27 Aug 2020 15:08:08 GMT
- Title: Theoretical formulations on thermodynamics of quantum impurity systems
- Authors: Hong Gong, Yao Wang, Hou-Dao Zhang, Rui-Xue Xu, Xiao Zheng, YiJing Yan
- Abstract summary: We put forward the theoretical foundation toward thermodynamics of quantum impurity systems measurable in experiments.
For illustration, we consider the simplest noninteracting systems, with focus on the strikingly different characteristics between the bosonic and fermionic scenarios.
- Score: 6.497459474852692
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we put forward the theoretical foundation toward thermodynamics
of quantum impurity systems measurable in experiments. The theoretical
developments involve the identifications on two types of thermodynamic
entanglement free--energy spectral functions for impurity systems that can be
either fermionic or bosonic or combined. Consider further the thermodynamic
limit in which the hybrid environments satisfy the Gaussian--Wick's theorem. We
then relate the thermodynamic spectral functions to the local quantum impurity
systems spectral densities that are often experimentally measurable. Another
type of inputs is the bare--bath coupling spectral densities, which could be
accurately determined with various methods. Similar relation is also
established for the nonentanglement component that exists only in anharmonic
bosonic impurity systems. For illustration, we consider the simplest
noninteracting systems, with focus on the strikingly different characteristics
between the bosonic and fermionic scenarios.
Related papers
- Entanglement in dual unitary quantum circuits with impurities [0.0]
We investigate entanglement dynamics in a quantum circuit perturbed by an impurity.
We compute entanglement entropy for both a semi-infinite and a finite subsystem within a finite distance of the impurity.
We show that such non-monotonic behavior can arise even in random chaotic circuits.
arXiv Detail & Related papers (2024-10-04T13:57:01Z) - Cavity QED materials: Comparison and validation of two linear response theories at arbitrary light-matter coupling strengths [41.94295877935867]
We develop a linear response theory for materials collectively coupled to a cavity that is valid in all regimes of light-matter coupling.
We compare two different approaches to obtain thermal Green functions.
We provide a detailed application of the theory to the Quantum Hall effect and to a collection of magnetic models.
arXiv Detail & Related papers (2024-06-17T18:00:07Z) - Thermodynamics of Permutation-Invariant Quantum Many-Body Systems: A
Group-Theoretical Framework [0.0]
Quantum systems of indistinguishable particles are commonly described using the formalism of second quantisation.
Coherence-induced many-body effects such as superradiance can arise even in systems whose constituents are not fundamentally indistinguishable.
arXiv Detail & Related papers (2022-06-25T12:48:49Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Quantum state inference from coarse-grained descriptions: analysis and
an application to quantum thermodynamics [101.18253437732933]
We compare the Maximum Entropy Principle method, with the recently proposed Average Assignment Map method.
Despite the fact that the assigned descriptions respect the measured constraints, the descriptions differ in scenarios that go beyond the traditional system-environment structure.
arXiv Detail & Related papers (2022-05-16T19:42:24Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Open system dynamics from thermodynamic compatibility [0.0]
In particular, strict energy conservation between the system and environment implies that the dissipative dynamical map commutes with the unitary system propagator.
We use spectral analysis to prove the general form of the ensuing master equation.
The obtained formal structure can be employed to test the compatibility of approximate derivations with thermodynamics.
arXiv Detail & Related papers (2020-11-06T18:23:52Z) - Geometric Quantum Thermodynamics [0.0]
Building on parallels between geometric quantum mechanics and classical mechanics, we explore an alternative basis for quantum thermodynamics.
We develop both microcanonical and canonical ensembles, introducing continuous mixed states as distributions on the manifold of quantum states.
We give both the First and Second Laws of Thermodynamics and Jarzynki's Fluctuation Theorem.
arXiv Detail & Related papers (2020-08-19T21:55:25Z) - Perspective: Numerically "exact" approach to open quantum dynamics: The
hierarchical equations of motion (HEOM) [0.0]
An open quantum system refers to a system that is further coupled to a bath system.
The hierarchical equations of motion (HEOM) can describe numerically "exact" dynamics of a reduced system.
arXiv Detail & Related papers (2020-06-09T21:00:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.