論文の概要: Causal blankets: Theory and algorithmic framework
- arxiv url: http://arxiv.org/abs/2008.12568v2
- Date: Tue, 29 Sep 2020 10:11:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-24 02:32:42.575641
- Title: Causal blankets: Theory and algorithmic framework
- Title(参考訳): 因果ブランケット:理論とアルゴリズムの枠組み
- Authors: Fernando E. Rosas, Pedro A.M. Mediano, Martin Biehl, Shamil Chandaria,
Daniel Polani
- Abstract要約: 本稿では,知覚行動ループ(PALO)を計算力学の原理に基づいてデータから直接識別する新しい枠組みを提案する。
我々のアプローチは因果毛布の概念に基づいており、官能・能動変数を動的に十分な統計量として捉えている。
- 参考スコア(独自算出の注目度): 59.43413767524033
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a novel framework to identify perception-action loops (PALOs)
directly from data based on the principles of computational mechanics. Our
approach is based on the notion of causal blanket, which captures sensory and
active variables as dynamical sufficient statistics -- i.e. as the "differences
that make a difference." Moreover, our theory provides a broadly applicable
procedure to construct PALOs that requires neither a steady-state nor Markovian
dynamics. Using our theory, we show that every bipartite stochastic process has
a causal blanket, but the extent to which this leads to an effective PALO
formulation varies depending on the integrated information of the bipartition.
- Abstract(参考訳): 本稿では,知覚行動ループ(PALO)を計算力学の原理に基づいてデータから直接識別する新しい枠組みを提案する。
我々のアプローチは因果毛布の概念に基づいており、感覚と活動変数を動的に十分な統計量、すなわち「違いを生み出す差」として捉えている。
さらに、我々の理論は、定常状態もマルコフ動力学も必要としないPALOを構築するための広く適用可能な手順を提供する。
この理論を用いて, 各両分節確率過程は因果毛布を持つが, 有効PALOの定式化に繋がる程度は, 両分節の統合情報によって異なることを示す。
関連論文リスト
- Unified Causality Analysis Based on the Degrees of Freedom [1.2289361708127877]
本稿では,システム間の因果関係を同定する統一手法を提案する。
システムの自由度を分析することで、私たちのアプローチは因果的影響と隠れた共同設立者の両方についてより包括的な理解を提供する。
この統合されたフレームワークは、理論モデルとシミュレーションを通じて検証され、その堅牢性とより広範な応用の可能性を示す。
論文 参考訳(メタデータ) (2024-10-25T10:57:35Z) - Sequential Representation Learning via Static-Dynamic Conditional Disentanglement [58.19137637859017]
本稿では,ビデオ中の時間非依存要因と時間変化要因を分離することに着目し,逐次的データ内での自己教師付き不整合表現学習について検討する。
本稿では,静的/動的変数間の因果関係を明示的に考慮し,それらの因子間の通常の独立性仮定を破る新しいモデルを提案する。
実験により、提案手法は、シーンのダイナミックスが内容に影響されるシナリオにおいて、従来の複雑な最先端技術よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-08-10T17:04:39Z) - Prototype-based Aleatoric Uncertainty Quantification for Cross-modal
Retrieval [139.21955930418815]
クロスモーダル検索手法は、共通表現空間を共同学習することにより、視覚と言語モダリティの類似性関係を構築する。
しかし、この予測は、低品質なデータ、例えば、腐敗した画像、速いペースの動画、詳細でないテキストによって引き起こされるアレタリック不確実性のために、しばしば信頼性が低い。
本稿では, 原型に基づくAleatoric Uncertainity Quantification (PAU) フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-29T09:41:19Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - Data Association Aware POMDP Planning with Hypothesis Pruning
Performance Guarantees [7.928094304325113]
あいまいなデータアソシエーションによるプランニングのためのプルーニングに基づくアプローチを導入する。
我々の重要な貢献は、仮説の完全な集合に基づく値関数と仮説のプルーンド・サブセットに基づく値関数とのバウンダリを導出することである。
我々は,これらの境界が,ふりかえりにおけるプルーニングの証明にどのように使用できるかを実証し,その損失に対する事前定義された限界を確保するために,どの仮説がプルーンであるかを決定する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-03-03T18:35:01Z) - Variation-based Cause Effect Identification [5.744133015573047]
本稿では、因果発見のための変分に基づく原因影響同定(VCEI)フレームワークを提案する。
我々の枠組みは、既存の非循環因果関係を前提として、原因とメカニズムの独立(ICM)の原理に依存している。
因果方向では、このような変動が効果発生機構に影響を与えないことが期待されている。
論文 参考訳(メタデータ) (2022-11-22T05:19:12Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - Statistical learning and cross-validation for point processes [0.9281671380673306]
本稿では,一般空間における点過程の一般(パラメトリック)統計学習フレームワークを提案する。
一般的な考え方は、対応するトレーニングセットを使用してcv生成検証セットを予測して適合させることである。
統計的学習手法が平均(積分)二乗誤差の点で芸術の状態を上回っていることを数値的に示す。
論文 参考訳(メタデータ) (2021-03-01T23:47:48Z) - Causal Expectation-Maximisation [70.45873402967297]
ポリツリーグラフを特徴とするモデルにおいても因果推論はNPハードであることを示す。
我々は因果EMアルゴリズムを導入し、分類的表現変数のデータから潜伏変数の不確かさを再構築する。
我々は、反事実境界が構造方程式の知識なしにしばしば計算できるというトレンドのアイデアには、目立たずの制限があるように思える。
論文 参考訳(メタデータ) (2020-11-04T10:25:13Z) - Latent Instrumental Variables as Priors in Causal Inference based on
Independence of Cause and Mechanism [2.28438857884398]
因果図形構造における潜時楽器変数や隠蔽共通原因などの潜時変数の役割について検討する。
2つの変数間の因果関係を推論する新しいアルゴリズムを導出する。
論文 参考訳(メタデータ) (2020-07-17T08:18:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。