論文の概要: A Short Review on Data Modelling for Vector Fields
- arxiv url: http://arxiv.org/abs/2009.00577v1
- Date: Tue, 1 Sep 2020 17:07:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-23 01:27:18.441186
- Title: A Short Review on Data Modelling for Vector Fields
- Title(参考訳): ベクトル場データモデリングに関する小特集号によせて
- Authors: Jun Li, Wanrong Hong, Yusheng Xiang
- Abstract要約: 機械学習手法は、幅広いデータ分析と分析タスクを扱うことに成功している。
近年、ディープニューラルネットワークを用いたエンドツーエンドモデリングスキームの成功により、より高度で構造化された実用的なデータへの拡張が可能になった。
本稿では,ベクトルデータ表現,空間データの予測モデル,コンピュータビジョン,信号処理,経験科学など,最近のベクトル場の計算ツールについて述べる。
- 参考スコア(独自算出の注目度): 5.51641435875237
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning methods based on statistical principles have proven highly
successful in dealing with a wide variety of data analysis and analytics tasks.
Traditional data models are mostly concerned with independent identically
distributed data. The recent success of end-to-end modelling scheme using deep
neural networks equipped with effective structures such as convolutional layers
or skip connections allows the extension to more sophisticated and structured
practical data, such as natural language, images, videos, etc. On the
application side, vector fields are an extremely useful type of data in
empirical sciences, as well as signal processing, e.g. non-parametric
transformations of 3D point clouds using 3D vector fields, the modelling of the
fluid flow in earth science, and the modelling of physical fields.
This review article is dedicated to recent computational tools of vector
fields, including vector data representations, predictive model of spatial
data, as well as applications in computer vision, signal processing, and
empirical sciences.
- Abstract(参考訳): 統計原理に基づく機械学習手法は、幅広いデータ分析と分析タスクを扱うことに非常に成功している。
従来のデータモデルは、主に独立した同一分散データに関係している。
近年、畳み込み層やスキップ接続などの効果的な構造を備えたディープニューラルネットワークを用いたエンドツーエンドモデリングスキームの成功により、自然言語、画像、ビデオなど、より高度で構造化された実用的なデータの拡張が可能になる。
アプリケーション側では、ベクトル場は経験的科学において非常に有用なデータであり、例えば3次元ベクトル場を用いた3次元点雲の非パラメトリック変換、地球科学における流体の流れのモデリング、物理場のモデリングなど、信号処理にも有用である。
本稿では,ベクトルデータ表現,空間データの予測モデル,コンピュータビジョン,信号処理,経験科学の応用など,ベクトル場の最近の計算ツールについて述べる。
関連論文リスト
- Learning Weather Models from Data with WSINDy [0.0]
Weak form Sparse Identification of Dynamics (WSINDy) algorithm can learn effective weather model fromsimulated and assimilated data。
提案手法は標準的なWSINDyアルゴリズムを任意の次元の高次元流体データに適応させる。
論文 参考訳(メタデータ) (2025-01-01T06:03:07Z) - An Intrinsic Vector Heat Network [64.55434397799728]
本稿では,3次元に埋め込まれた接ベクトル場を学習するためのニューラルネットワークアーキテクチャを提案する。
本研究では, ベクトル値の特徴データを空間的に伝播させるために, トレーニング可能なベクトル熱拡散モジュールを提案する。
また,四面体メッシュ生成の産業的有用性に対する本手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-06-14T00:40:31Z) - Synthetic Data Generation and Deep Learning for the Topological Analysis
of 3D Data [0.0]
この研究は、深層学習を用いて、3Dでスパースで無秩序な点雲のシーンのトポロジーを推定する。
この実験結果は、洗練された合成データ生成の助けを借りて、ニューラルネットワークがセグメンテーションに基づくトポロジ的データ解析を行うことができるという仮説を支持する。
論文 参考訳(メタデータ) (2023-09-29T04:37:35Z) - 3D Adversarial Augmentations for Robust Out-of-Domain Predictions [115.74319739738571]
ドメイン外データへの一般化の改善に注力する。
対象を逆向きに変形させるベクトルの集合を学習する。
本研究では,学習したサンプル非依存ベクトルをモデルトレーニング時に利用可能なオブジェクトに適用することにより,対数拡大を行う。
論文 参考訳(メタデータ) (2023-08-29T17:58:55Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
ニューラルネットワークのトレーニングに属性マップを利用すると、モデルの正規化が向上し、性能が向上することを示す。
特に、我々の汎用的なドメインに依存しないアプローチは、ビジョン、自然言語処理、時系列タスクにおける最先端の結果をもたらすことを示す。
論文 参考訳(メタデータ) (2022-05-30T13:34:46Z) - Positional Encoding Augmented GAN for the Assessment of Wind Flow for
Pedestrian Comfort in Urban Areas [0.41998444721319217]
本研究は,CFDを用いた3次元フローフィールドの計算から,建物のフットプリント上の2次元画像から画像への変換に基づく問題まで,歩行者の高さレベルでのフローフィールドの予測に至るまでの課題を言い換える。
本稿では,画像から画像への変換タスクの最先端を表現したPix2PixやCycleGANなど,GAN(Generative Adversarial Network)の利用について検討する。
論文 参考訳(メタデータ) (2021-12-15T19:37:11Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) は、新しい同変層と関連するスカラー化およびベクトル化層に基づいて構築されている。
シミュレーションされたニュートン力学系の軌跡を全観測データと部分観測データで予測する手法について検討した。
論文 参考訳(メタデータ) (2021-10-26T14:26:25Z) - Data-Driven Shadowgraph Simulation of a 3D Object [50.591267188664666]
我々は、数値コードをより安価でプロジェクションベースのサロゲートモデルに置き換えている。
このモデルは、数値的な方法で必要となるすべての前の電場を計算することなく、所定の時間で電場を近似することができる。
このモデルでは, シミュレーションパラメータの狭い範囲におけるデータの摂動問題において, 高品質な再構成が示されており, 大規模な入力データに利用することができる。
論文 参考訳(メタデータ) (2021-06-01T08:46:04Z) - Time Varying Particle Data Feature Extraction and Tracking with Neural
Networks [20.825102707056647]
我々は, 特徴抽出と追跡を支援するために, 科学的粒子データのための特徴表現を作成するために, 深層学習アプローチを採用する。
本研究では,局所近傍における空間的位置と物理的属性の関係を表現するために,潜在ベクトルを生成する深層学習モデルを用いる。
高速な特徴追跡を実現するために,特徴空間に平均シフト追跡アルゴリズムを適用した。
論文 参考訳(メタデータ) (2021-05-27T15:38:14Z) - PREPRINT: Comparison of deep learning and hand crafted features for
mining simulation data [7.214140640112874]
本稿では,高次元データセットから有意な結果を自動抽出する作業について述べる。
このようなデータを処理することができる深層学習手法を提案し、シミュレーションデータに関する関連するタスクを解決するように訓練することができる。
16,000フローフィールドを含む翼まわりの流れ場の2次元シミュレーションの大規模なデータセットをコンパイルし,比較を行った。
論文 参考訳(メタデータ) (2021-03-11T09:28:00Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。