Multiparameter Quantum Estimation Theory in Quantum Gaussian states
- URL: http://arxiv.org/abs/2009.00762v3
- Date: Sat, 12 Sep 2020 20:51:52 GMT
- Title: Multiparameter Quantum Estimation Theory in Quantum Gaussian states
- Authors: Lahcen Bakmou, Mohammed Daoud, Rachid ahl laamara
- Abstract summary: This work concerns the computation of the analytical expression of the quantum Fisher information matrix (QFIM)
We give the analytical formulas of right logarithmic derivative (RLD) and symmetric logarithmic derivative (SLD) operators.
We also derive an explicit expression of the condition which ensures the saturation of the quantum Cram'er-Rao bound in estimating several parameters.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multiparameter quantum estimation theory aims to determine simultaneously the
ultimate precision of all parameters contained in the state of a given quantum
system. Determining this ultimate precision depends on the quantum Fisher
information matrix (QFIM) which is essential to obtaining the quantum
Cram\'er-Rao bound. This is the main motivation of this work which concerns the
computation of the analytical expression of the QFIM. Inspired by the results
reported in J. Phys. A 52, 035304 (2019), the general formalism of the
multiparameter quantum estimation theory of quantum Gaussian states in terms of
their first and second moments are given. We give the analytical formulas of
right logarithmic derivative (RLD) and symmetric logarithmic derivative (SLD)
operators. Then we derive the general expressions of the corresponding quantum
Fisher information matrices. We also derive an explicit expression of the
condition which ensures the saturation of the quantum Cram\'er-Rao bound in
estimating several parameters. Finally, we examine some examples to clarify the
use of our results
Related papers
- Simulating NMR Spectra with a Quantum Computer [49.1574468325115]
This paper provides a formalization of the complete procedure of the simulation of a spin system's NMR spectrum.
We also explain how to diagonalize the Hamiltonian matrix with a quantum computer, thus enhancing the overall process's performance.
arXiv Detail & Related papers (2024-10-28T08:43:40Z) - Random Matrix Theory Approach to Quantum Fisher Information in Quantum
Many-Body Systems [0.0]
We theoretically investigate parameter quantum estimation in quantum chaotic systems.
Our analysis is based on an effective description of non-integrable quantum systems in terms of a random matrix Hamiltonian.
arXiv Detail & Related papers (2024-02-14T09:07:25Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Advantages of quantum mechanics in the estimation theory [0.0]
In quantum theory, the situation with operators is different due to its non-commutativity nature.
We formulate, with complete generality, the quantum estimation theory for Gaussian states in terms of their first and second moments.
arXiv Detail & Related papers (2022-11-13T18:03:27Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Analytical techniques in single and multi-parameter quantum estimation
theory: a focused review [0.0]
This review provides techniques on the analytical calculation of the quantum Fisher information as well as the quantum Fisher information matrix.
It provides a mathematical transition from classical to quantum estimation theory applied to many freedom quantum systems.
arXiv Detail & Related papers (2022-04-29T17:29:45Z) - Quantum Cram\'er-Rao bound for quantum statistical models with
parameter-dependent rank [0.0]
We argue that the limiting version of quantum Cram'er-Rao bound still holds when the parametric density operator changes its rank.
We analyze a typical example of the quantum statistical models with parameter-dependent rank.
arXiv Detail & Related papers (2021-11-01T13:23:04Z) - Multi-parameter quantum metrology with discrete-time quantum walks [0.0]
We use the quantum walker as a probe for unknown parameters encoded on its coin degrees of freedom.
We apply our findings to relevant case studies, including the simultaneous estimation of charge and mass in the discretized Dirac model.
arXiv Detail & Related papers (2021-10-05T13:25:32Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - On the properties of the asymptotic incompatibility measure in
multiparameter quantum estimation [62.997667081978825]
Incompatibility (AI) is a measure which quantifies the difference between the Holevo and the SLD scalar bounds.
We show that the maximum amount of AI is attainable only for quantum statistical models characterized by a purity larger than $mu_sf min = 1/(d-1)$.
arXiv Detail & Related papers (2021-07-28T15:16:37Z) - Experimental Validation of Fully Quantum Fluctuation Theorems Using
Dynamic Bayesian Networks [48.7576911714538]
Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small systems.
We experimentally verify detailed and integral fully quantum fluctuation theorems for heat exchange using two quantum-correlated thermal spins-1/2 in a nuclear magnetic resonance setup.
arXiv Detail & Related papers (2020-12-11T12:55:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.