Quantum Discriminator for Binary Classification
- URL: http://arxiv.org/abs/2009.01235v3
- Date: Fri, 28 Jan 2022 02:36:43 GMT
- Title: Quantum Discriminator for Binary Classification
- Authors: Prasanna Date and Wyatt Smith
- Abstract summary: We propose a novel quantum machine learning model called the Quantum Discriminator.
We show that the quantum discriminator can attain 99% accuracy in simulation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computers have the unique ability to operate relatively quickly in
high-dimensional spaces -- this is sought to give them a competitive advantage
over classical computers. In this work, we propose a novel quantum machine
learning model called the Quantum Discriminator, which leverages the ability of
quantum computers to operate in the high-dimensional spaces. The quantum
discriminator is trained using a quantum-classical hybrid algorithm in O(N
logN) time, and inferencing is performed on a universal quantum computer in
linear time. The quantum discriminator takes as input the binary features
extracted from a given datum along with a prediction qubit initialized to the
zero state and outputs the predicted label. We analyze its performance on the
Iris data set and show that the quantum discriminator can attain 99% accuracy
in simulation.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Quadratic speed-ups in quantum kernelized binary classification [1.3812010983144802]
Several quantum machine learning algorithms that use quantum kernels as a measure of similarities between data have emerged to perform binary classification on datasets encoded as quantum states.
We propose new quantum circuits for the QKCs in which the number of qubits is reduced by one, and the circuit depth is reduced linearly with respect to the number of sample data.
We verify the quadratic speed-up over previous methods through numerical simulations on the Iris dataset.
arXiv Detail & Related papers (2024-03-26T07:39:48Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Machine learning applications for noisy intermediate-scale quantum
computers [0.0]
We develop and study three quantum machine learning applications suitable for NISQ computers.
These algorithms are variational in nature and use parameterised quantum circuits (PQCs) as the underlying quantum machine learning model.
We propose a variational algorithm in the area of approximate quantum cloning, where the data becomes quantum in nature.
arXiv Detail & Related papers (2022-05-19T09:26:57Z) - Trainable Discrete Feature Embeddings for Variational Quantum Classifier [4.40450723619303]
We show how to map discrete features with fewer quantum bits using Quantum Random Access Coding (QRAC)
We propose a new method to embed discrete features with trainable quantum circuits by combining QRAC and a recently proposed strategy for training quantum feature map called quantum metric learning.
arXiv Detail & Related papers (2021-06-17T12:02:01Z) - Quantum State Discrimination for Supervised Classification [0.5772546394254112]
We show how quantum state discrimination can represent a useful tool to address the standard classification problem in machine learning.
Previous studies have shown that the optimal quantum measurement theory can inspire a new binary classification algorithm.
We propose a model for arbitrary multiclass classification inspired by quantum state discrimination.
arXiv Detail & Related papers (2021-04-02T10:22:59Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - A rigorous and robust quantum speed-up in supervised machine learning [6.402634424631123]
In this paper, we establish a rigorous quantum speed-up for supervised classification using a general-purpose quantum learning algorithm.
Our quantum classifier is a conventional support vector machine that uses a fault-tolerant quantum computer to estimate a kernel function.
arXiv Detail & Related papers (2020-10-05T17:22:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.