論文の概要: About Graph Degeneracy, Representation Learning and Scalability
- arxiv url: http://arxiv.org/abs/2009.02085v1
- Date: Fri, 4 Sep 2020 09:39:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-22 01:52:59.033853
- Title: About Graph Degeneracy, Representation Learning and Scalability
- Title(参考訳): グラフの縮退、表現学習、スケーラビリティについて
- Authors: Simon Brandeis, Adrian Jarret, Pierre Sevestre
- Abstract要約: ウォークベースグラフ表現学習アルゴリズムの時間とメモリ消費を削減するために,Kコア分解を利用した2つの手法を提案する。
提案手法の有効性を,いくつかの学術的データセットを用いて評価した。
- 参考スコア(独自算出の注目度): 2.029783382155471
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graphs or networks are a very convenient way to represent data with lots of
interaction. Recently, Machine Learning on Graph data has gained a lot of
traction. In particular, vertex classification and missing edge detection have
very interesting applications, ranging from drug discovery to recommender
systems. To achieve such tasks, tremendous work has been accomplished to learn
embedding of nodes and edges into finite-dimension vector spaces. This task is
called Graph Representation Learning. However, Graph Representation Learning
techniques often display prohibitive time and memory complexities, preventing
their use in real-time with business size graphs. In this paper, we address
this issue by leveraging a degeneracy property of Graphs - the K-Core
Decomposition. We present two techniques taking advantage of this decomposition
to reduce the time and memory consumption of walk-based Graph Representation
Learning algorithms. We evaluate the performances, expressed in terms of
quality of embedding and computational resources, of the proposed techniques on
several academic datasets. Our code is available at
https://github.com/SBrandeis/kcore-embedding
- Abstract(参考訳): グラフやネットワークは、大量のインタラクションでデータを表現するのにとても便利な方法です。
最近、グラフデータ上の機械学習は多くの注目を集めています。
特に、頂点分類とエッジ検出の欠如は、薬物発見から推奨システムまで、非常に興味深い応用である。
そのようなタスクを達成するために、ノードとエッジの有限次元ベクトル空間への埋め込みを学習する膨大な作業が達成されている。
このタスクはグラフ表現学習と呼ばれる。
しかし、グラフ表現学習技術は、しばしば禁止時間とメモリの複雑さを示し、ビジネスサイズのグラフでリアルタイムに使用するのを防いでいる。
本稿では,グラフの縮退特性(K-Core分解)を活用することでこの問題に対処する。
本稿では,この分解を利用して,ウォーク型グラフ表現学習アルゴリズムの時間とメモリ消費を削減する2つの手法を提案する。
本研究では,いくつかの学術データセットにおいて提案手法の性能と計算資源の質について評価を行った。
私たちのコードはhttps://github.com/SBrandeis/kcore-embeddingで利用可能です。
関連論文リスト
- Learning on Large Graphs using Intersecting Communities [13.053266613831447]
MPNNは、各ノードの隣人からのメッセージを集約することで、入力グラフ内の各ノードの表現を反復的に更新する。
MPNNは、あまりスパースではないため、すぐに大きなグラフの禁止になるかもしれない。
本稿では,入力グラフを交差するコミュニティグラフ (ICG) として近似することを提案する。
論文 参考訳(メタデータ) (2024-05-31T09:26:26Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
本稿では,属性付きグラフデータに対する新しいDeep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE)を提案する。
提案手法は,最先端のベースラインアルゴリズムを,一般的なデータセット間でのダウンストリームタスクの差を大きく越える。
論文 参考訳(メタデータ) (2024-01-12T17:57:07Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Learnable Graph Matching: A Practical Paradigm for Data Association [74.28753343714858]
これらの問題に対処するための一般的な学習可能なグラフマッチング法を提案する。
提案手法は,複数のMOTデータセット上での最先端性能を実現する。
画像マッチングでは,一般的な屋内データセットであるScanNetで最先端の手法より優れている。
論文 参考訳(メタデータ) (2023-03-27T17:39:00Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
グラフレベルの学習は、比較、回帰、分類など、多くのタスクに適用されている。
グラフの集合を学習する伝統的なアプローチは、サブストラクチャのような手作りの特徴に依存している。
ディープラーニングは、機能を自動的に抽出し、グラフを低次元表現に符号化することで、グラフレベルの学習をグラフの規模に適応させるのに役立っている。
論文 参考訳(メタデータ) (2023-01-14T09:15:49Z) - Scaling R-GCN Training with Graph Summarization [71.06855946732296]
リレーショナルグラフ畳み込みネットワーク(R-GCN)のトレーニングは、グラフのサイズに合わない。
本研究では,グラフの要約手法を用いてグラフを圧縮する実験を行った。
AIFB, MUTAG, AMデータセットについて妥当な結果を得た。
論文 参考訳(メタデータ) (2022-03-05T00:28:43Z) - Learnable Graph Matching: Incorporating Graph Partitioning with Deep
Feature Learning for Multiple Object Tracking [58.30147362745852]
フレーム間のデータアソシエーションは、Multiple Object Tracking(MOT)タスクの中核にある。
既存の手法は、主にトラックレットとフレーム内検出の間のコンテキスト情報を無視する。
そこで本研究では,学習可能なグラフマッチング手法を提案する。
論文 参考訳(メタデータ) (2021-03-30T08:58:45Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
グラフ埋め込みは、高次元および非ユークリッド特徴空間でデータ構造を変換しエンコードする方法である。
CensNetは一般的なグラフ埋め込みフレームワークで、ノードとエッジの両方を潜在機能空間に埋め込む。
提案手法は,4つのグラフ学習課題における最先端のパフォーマンスを達成または一致させる。
論文 参考訳(メタデータ) (2020-10-25T22:39:31Z) - Understanding Coarsening for Embedding Large-Scale Graphs [3.6739949215165164]
機械学習(ML)アルゴリズムによるグラフの適切な解析は、研究や産業の多くの分野において、より深い洞察をもたらす可能性がある。
グラフデータの不規則構造は、グラフ上でMLタスクを実行するための障害を構成する。
本研究では, 粗大化品質が埋込み性能に及ぼす影響を, 速度と精度の両方で解析する。
論文 参考訳(メタデータ) (2020-09-10T15:06:33Z) - Graph topology inference benchmarks for machine learning [16.857405938139525]
本稿では,グラフ推論手法の相対的メリットと限界を明らかにするために,いくつかのベンチマークを導入する。
我々はまた、文学において最も顕著な技法のいくつかを対比している。
論文 参考訳(メタデータ) (2020-07-16T09:40:32Z) - Time-varying Graph Representation Learning via Higher-Order Skip-Gram
with Negative Sampling [0.456877715768796]
我々は,スキップグラム埋め込み手法が行列分解を暗黙的に行うという事実に基づいて構築する。
負のサンプリングを持つ高次スキップグラムは、ノードと時間の役割を乱すことができることを示す。
提案手法を時間分解型対面近接データを用いて実証的に評価し,学習した時間変化グラフ表現が最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-06-25T12:04:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。